Experimental Study of Splitting Tensile Strength of Polymer Resin Grout with Fly Ash

2015 ◽  
Vol 789-790 ◽  
pp. 38-42
Author(s):  
Nuria S. Mohammed ◽  
Ahmed Baharuddin Abd Rahman ◽  
Nur Hafizah A. Khalid ◽  
Musaab Ahmed

Polymer resin grout can be used as bonding material for grouted sleeve connections This paper presents the experimental results on the effectiveness of fly ash as micro filler to the splitting tensile strength of polymer grout. In addition, the cement grout that is usually used as bonding material had been tested for comparison. Eleven proportions, of fly ash as the filler and polymer as binder, were tested with the binder to filler volume ratios of 1:1 and 1:1.5. The test results revealed that fly ash can be used as a micro-filler material to partially replace ordinary river sand in polymer resin grout. The splitting tensile strength of the polymer grout increases with the increase of fly ash contents. However, for higher level of fly ash of more than 22%, the splitting tensile strength deteriorated. For binder: filler ratio of 1:1, the optimum fly ash content of 22% gave the maximum splitting strength of 17.62 MPa, which can be considered acceptable for producing grout with high strength bonding material.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


2020 ◽  
Vol 856 ◽  
pp. 367-375
Author(s):  
Hatairat Poorahong ◽  
Nunthanis Wongvatana ◽  
Pitthaya Jamsawang ◽  
Kamolwan Lueprasert ◽  
Kullachai Tantayopin ◽  
...  

The main objective of this study is to investigate the mechanical properties of dredged sediments, which are considered as waste from the process of removing sediments from the bottom of a dam's reservoir. The dredged sediments with stabilization can to be reused as construction and building materials in civil engineering works. The mechanical tests included unconfined compressive strength (UCS) and splitting tensile strength (STS) to understand the behavior of the dredged sediments stabilized with ordinary portland cement (OPC) type I and fly ash (FA). The overall test results indicated that OPC type I and FA were effective in stabilizing the sampled dredged sediments from two dams in northern Thailand. The stabilization with 10% FA content was found to be most effective for improving mechanical properties of the stabilized samples.


2012 ◽  
Vol 238 ◽  
pp. 138-141
Author(s):  
Wei Xie ◽  
Hai Juan Zhang ◽  
Shu Shan Li

By the test study of basic mechanics properties of concrete with different fly ash content, the influence of the content of fly ash on the compressive strength, flexural strength, splitting tensile strength and static compressive elastic modulus of concrete are analyzed with the explaining of the influence mechanism of fly ash. The test results show that, comparing with the normal reference concrete, the early age strength of fly ash concrete enhances slowly, while the late strength develops rapidly, even overpasses the strength of normal reference concrete.


2013 ◽  
Vol 357-360 ◽  
pp. 1337-1342
Author(s):  
Lei Hong ◽  
Wei Cheng

The high strength composite ceramsite was prepared by using fly ash and waste glass as main raw materials and some admixtures such as binder and bubble-forming agent. The suitable technological condition of preparing high strength composite ceramsite was given by studying the influence of the different mix proportions and different sintering systems on the properties of ceramsite. The test results indicate that the compressive strength in cylinder of high strength composite ceramsite which was prepared under certain technological condition can reach 9.9MPa and its bulk density is 974Kg/m3and the water absorption in one hour is 3.6%. The XRD(X Ray Diffraction) and SEM (Scanning Electron Microscope) analyses show that a large number of amorphous gel phases which affect the strength of ceramsite were produced in the process of sintering fly ash and waste glass and abundant even bubbles were formed inside of the ceramsite.


2010 ◽  
Vol 168-170 ◽  
pp. 582-588
Author(s):  
Feng Chen Zhang ◽  
De Jian Shen ◽  
Ji Kai Zhou ◽  
Zhong Hua Li

Cement hydration at early age is sometimes in a certain thermal environment probably caused by hydration heat of mass concrete as well as cement productions curing at high temperature. And phases composition and strength development in thermal environment are commonly different from those in normal curing conditions. Phases composition and strength development of concrete containing different fly ash content curing in different thermal environment are studied in this paper. Experimental results show that compressive strengths of concrete with 0.3 water to binder ratio increase with the increase of curing temperature. Splitting tensile strength of concrete not containing any fly ash curing at about 50 is the highest among those curing at temperature between 40 and 80 . For concrete with different fly ash content, splitting tensile strengths increase approximately with the increse of curing temperature. Dehydration of ettringite and formation of monosulfate solid solution and AFm at higher temperature perhaps relate to the development of concrete splitting tensile strength along with different curing temperature. Adding fly ash to binder, curing temperature at which hydration phases change occurs is raised, which helps to explain that splitting tensile strengths of concrete with different fly ash content decrease little with the increase of curing temperature between 60 and 80 .


2011 ◽  
Vol 374-377 ◽  
pp. 1485-1490
Author(s):  
Jin Jun Guo ◽  
Ju Hong Han ◽  
Zhe Ting Xu

For revealing the behaviors of modified concrete materials against eroding from composite solution, accelerated deterioration tests of Portland concrete, polypropylene fiber concrete, fly ash concrete and concrete mixed with polypropylene fiber and fly ash were made under continuous immersion in two types of composite corrosion solutions, which were sulfate composite solution and magnesium composite solution. The compressive strength, splitting tensile strength and elastic modulus of modified concrete subjected to corrosion were detected. The results show that capacity of corrosion resistance of concrete is enhanced remarkably by modifying approach of mixing fly ash and polypropylene fiber into concrete. The deteriorated splitting tensile strength of modified concrete is able to be increased by 30%-60% compared with ordinary concrete. The research results are benefit to engineering design and application.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Min Zhang ◽  
Li-min Yang ◽  
Jin-Jun Guo ◽  
Wen-li Liu ◽  
Hong-li Chen

Under the condition of drying and wetting circulation, ordinary concrete, modified concrete containing fly ash, and double-admixture concrete containing fly ash and polypropylene fiber were corroded in the solution of Na2SO4 and (NH4)2SO4. The sulfate concentration of the solution was designed to be 1000 g/L. The compressive strength and splitting tensile strength of the concrete were tested after different number of drying and wetting cycles (0, 2, 4, 6, 8, and 10). The results indicate that the strength of concrete increases in the early stages of corrosion and decreases gradually later. The admixture significantly improves the resistance to sulfate erosion of the modified concrete, while polypropylene fiber plays a less important role on anticorrosion properties. When suffered 10 times of drying and wetting cycle, the compressive strength and splitting tensile strength of modified concrete increase by 28% and 19%, respectively. Based on the test results, the service life of the modified concrete corroded by sulfate was predicted.


2020 ◽  
Vol 4 (2) ◽  
pp. 284-289
Author(s):  
Dr.Muhammad Magana Aliyu Aliyu ◽  
Nuruddeen Muhammad Musa

The use of eggshells ash for partial cement replacement in concrete has been well established in earlier studies. The effect of such partial replacement of cement with an eggshell ash and Plastiment BV-40 was investigated in this. Tests including slump test, compressive strength test, splitting tensile strength test and concrete density test were carried out on concrete in which cement was partially replaced with 0%, 5%, 10%, 15%, 20%, and 25% eggshell ash and presented. The test results indicate that eggshell ash decreases the workability of concrete. Also, for the compressive strength at 5% content, after which there is  decrease in the compressive strength with increase in the ash content. Furthermore, eggshell ash is found to increase the concrete splitting tensile strength. It was concluded that eggshell ash has the potential of being utilized in concrete as partial replacement of cement.


Sign in / Sign up

Export Citation Format

Share Document