scholarly journals Design and Fabrication of a Stacked Three-Phase Piezoelectric Composites Ring Array Underwater Ultrasound Transducer

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5971
Author(s):  
Lili Xia ◽  
Hongwei Wang ◽  
Qiguo Huang

A stacked three-phase piezoelectric composites ring array underwater ultrasound transducer was developed in this paper. The circular structure of three-phase piezoelectric composite with a large open angle was improved based on the 1-3 piezoelectric composites. The structure size of the transducer’s sensitive component was designed by using ANSYS simulation software, and the single-ring samples of three-phase piezoelectric composites with different thicknesses were fabricated. Based on the bandwidth broadening theory of multimode coupled vibration, the piezoelectric composite ring-shaped sensitive component was fabricated by the piezoelectric composite curved-surface-forming process. According to the design structure of the transducer, the stacked three-phase piezoelectric composites ring array underwater ultrasound transducer was processed. The experimental results show that the maximum transmission voltage response is 154 dB, the open angle of the horizontal beam reaches 360°, and the bandwidth of −3 dB is 86 kHz. The developed transducers achieved a high frequency, broadband, and large open angle to radiate sound waves.

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2347 ◽  
Author(s):  
Shaohua Hao ◽  
Hongwei Wang ◽  
Chao Zhong ◽  
Likun Wang ◽  
Hao Zhang

A wide-band cylindrical transducer was developed by using the wide band of the composite material and the matched matching layer for multimode coupling. Firstly, the structure size of the transducer’s sensitive component was designed by using ANSYS simulation software. Secondly, the piezoelectric composite ring-shaped sensitive component was fabricated by the piezoelectric composite curved-surface forming process, and the matching layer was coated on the periphery of the ring-shaped piezoelectric composite material. Finally, it was encapsulated and the electrodes were drawn out to make a high-frequency broadband horizontal omnidirectional water acoustic transducer prototype. After testing, the working frequency range of the transducer was 230–380 kHz, and the maximum transmission voltage response was 168 dB in the water.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4336 ◽  
Author(s):  
Qiguo Huang ◽  
Hongwei Wang ◽  
Shaohua Hao ◽  
Chao Zhong ◽  
Likun Wang

This paper describes the fabrication of 1-3 piezoelectric composites by using PZT5-A pure piezoelectric ceramics and the preparation of a high-frequency single-directional planar underwater ultrasound transducer by using the developed composites. First, three material models of the same size were designed and simulated by ANSYS finite element simulation software. Next, based on the simulation results, the 1-3 piezoelectric composites were developed. Finally, a high-frequency single-directional planar underwater ultrasound transducer was fabricated by encapsulating and gluing the 1-3 piezoelectric composites. The performance of the transducer was tested, and results showed that the device was characterized by single-mode operation in the working frequency band, a high transmitting voltage response, and single directivity.


Piezoelectric fibrous composites of two, three and four phases are considered. The phase boundaries are cylindrical but otherwise the microgeometry is totally arbitrary. The constituents are transversely isotropic, and exhibit pyroelectricity. Exact relations are derived between the local fields arising under a uniform electromechanical loading and a uniform temperature change in the piezoelectric composite. For given overall material symmetry, exact connections are obtained among the effective elastic, piezoelectric and dielectric constants of two- and three- phase systems. It is also shown that the effective thermal stress and pyroelectric coefficients can be expressed in terms of the effective elastic, piezoelectric, dielectric constants and constituent properties in two-, three- and four-phase composites.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1417
Author(s):  
Jiacheng Wang ◽  
Chao Zhong ◽  
Shaohua Hao ◽  
Ning Lv ◽  
Likun Wang

To improve the transmission performance and preparation of a transducer array, two planar array transducers based on connected 1–3 piezoelectric composites as a matrix were designed. Each transducer contained 25 array elements with a gap of 1 mm between them. The length, width and height of each array element were 1 mm, 26 mm and 5 mm, respectively. Two kinds of array transducers were tested through finite element simulation and experiments. The array transducer prototype was fabricated based on two kinds of composite materials, and the fabrication cycle was short. Our results show that the maximum transmission voltage response of the two-phase 1–3 full array driver is up to 179 dB at 200–400 kHz and the acoustic radiation intensity can be increased by up to 22% compared with the traditional splicing transducer array. It is suitable for short-range target positioning and measurement. Moreover, in the single element mode, the beam of the three-phase 1–3 transducer has no sidelobe and a single element −3 dB beam width of up to 91°. Furthermore, the beam width of the two-phase 1–3 type is 54°, and the acoustic radiation breadth is improved by 40.6%. The three-phase 1–3 type array transducer has the characteristics of concentrated acoustic transmission energy of the whole array, and its −3 dB beam width is 3.5°. The beam width decreased by 12.5%, indicating that the three-phase 1–3 type transducer is suitable for short-range target detection and perception. The two array transducers have their own advantages in transmitting the voltage response and beam width, which must be selected on the basis of the requirements of practical applications.


2015 ◽  
Vol 818 ◽  
pp. 252-255 ◽  
Author(s):  
Ján Slota ◽  
Marek Šiser

The paper deals with optimization of forming process for AISI 430 stainless steel with nominal thickness 0.4 mm. During forming of sidewall for washing machine drum, some wrinkles remain at the end of forming process in some places. This problem was solved by optimization the geometry of the drawpiece using numerical simulation. During optimization a series of modifications of the part geometry to absolute elimination of wrinkling was performed. On the basis of mechanical tests, the material model was created and imported into the material database of Autoform simulation software.


2010 ◽  
Vol 123-125 ◽  
pp. 161-164
Author(s):  
Dong Yu Xu ◽  
Shi Feng Huang ◽  
Chao Ju ◽  
Zong Zhen Zhang ◽  
Xin Cheng ◽  
...  

Periodic and non-periodic 1-3 type cement based piezoelectric composites were fabricated by cut and filling technique, using P(MN)ZT ceramic as functional material and cement as matrix. The influences of periodicity of piezoelectric ceramic rods in the composites on electrical properties of all the composites were discussed. The results show that the non-periodic composites have larger dielectric factor and piezoelectric strain constant than those of the periodic composite. The impedance-frequency spectra analysis indicates that the non-periodic arrangement of ceramic rods can effectively restrict the lateral structural mode of the composite, accordingly reduces the coupling resonant between the thickness resonant mode and lateral resonant mode. The thickness electromechanical coupling coefficient of non-periodic composites is larger than that of the periodic composite. With increasing the non-periodic level of P(MN)ZT ceramic in the composites, the mechanical quality factor of the composites increases gradually. Therefore, 1-3 type cement based piezoelectric composites with different special abilities can be obtained by varying the periodic arrangement of P(MN)ZT ceramic rods in the composites.


Author(s):  
Xiaohua Jian ◽  
Pengbo Liu ◽  
Zhangjian Li ◽  
Jiabing Lv ◽  
Chen Yang ◽  
...  

2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 874-883 ◽  
Author(s):  
Markus Hilpert ◽  
Gerhard H. Jirka ◽  
Erich J. Plate

We investigate the excitation by sound waves of capillary trapped oil blobs. The three‐phase contact lines either remain pinned to the heterogeneities of the solid surface or slide if sound waves are applied. We derive approximate, analytical expressions for the resonance of oil blobs in capillary tubes for both types of contact line behavior. Based upon these simple model systems, we conclude that resonance of oil blobs is significant for coarse‐grained but not fine‐grained media.


2008 ◽  
Vol 141-143 ◽  
pp. 283-288 ◽  
Author(s):  
Manel Campillo ◽  
Maite T. Baile ◽  
Sergi Menargues ◽  
Antonio Forn

EN AC-46500 aluminium components are formed by Semi-Solid Rheocasting (SSR) in an industrial plant using a 700 tons high pressure machine. The dies wear was designed by the PLCO model of the ProCast simulation software. The components have had a good structural integrity and the mechanical properties after T6 treatment have been equivalent to that obtained by the same alloy by die cast. The present work describes the SSR forming process, the resulting microstructure as well as the optimization of the ageing heat treatment by hardness evolution. The results of the tensile tests make these clear.


Sign in / Sign up

Export Citation Format

Share Document