scholarly journals Shaping the Microstructure of High-Aluminum Cast Iron in Terms of the Phenomenon of Spontaneous Decomposition Generated by the Presence of Aluminum Carbide

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5993
Author(s):  
Robert Gilewski ◽  
Dariusz Kopyciński ◽  
Edward Guzik ◽  
Andrzej Szczęsny

A suitable aluminum additive in cast iron makes it resistant to heat in a variety of environments and increases the abrasion resistance of the cast iron. It should be noted that high-aluminum cast iron has the potential to become an important eco-material. The basic elements from which it is made—iron, aluminum and a small amount of carbon—are inexpensive components. This material can be made from contaminated aluminum scrap, which is increasingly found in metallurgical scrap. The idea is to produce iron castings with the highest possible proportion of aluminum. Such castings are heat-resistant and have good abrasive properties. The only problem to be solved is to prevent the activation of the phenomenon of spontaneous decomposition. This phenomenon is related to the Al4C3 hygroscopic aluminum carbide present in the structure of cast iron. Previous attempts to determine the causes of spontaneous disintegration by various researchers do not describe them comprehensively. In this article, the mechanism of the spontaneous disintegration of high-aluminum cast iron castings is defined. The main factor is the large relative geometric dimensions of Al4C3 carbide. In addition, methods for counteracting the phenomenon of spontaneous decay are developed, which is the main goal of the research. It is found that a reduction in the size of the Al4C3 carbide or its removal lead to the disappearance of the self-disintegration effect of high-aluminum cast iron. For this purpose, an increased cooling rate of the casting is used, as well as the addition of elements (Ti, B and Bi) to cast iron, supported in some cases by heat treatment. The tests are conducted on the cast iron with the addition of 34–36% mass aluminum. The molten metal is superheated to 1540 °C and then the cast iron samples are cast at 1420 °C. A molding sand with bentonite is used to produce casting molds.

2010 ◽  
Vol 457 ◽  
pp. 261-266
Author(s):  
Vladimir D. Belov ◽  
Edis B. Ten ◽  
Alexander S. Drokin

This work deals with the problem of casting production from high-aluminum cast iron Al22D. This cast iron is characterized by unique combination of properties [1-3]: high heat-resistance in corrosive gases medium especially containing sulfurous gases; relatively low density in comparison with gray iron and satisfactory mechanical properties. In addition, castings made from high aluminum cast iron Al22D are required in many areas of mechanical engineering. However, obtaining high-quality products from this cast iron is a particular problem due to its low-casting properties, especially its high tendency to gas saturation, oxidization and forming scabs, shrinkage and gas-shrinkage defects. Therefore, the aim of this work is the study of the castings feeding parameters. In addition, the technology of "exhaust manifold" casting of internal combustion engine designed to work in forced mode was developed on the basis of the obtained results.


2021 ◽  
Vol 11 (20) ◽  
pp. 9527
Author(s):  
Robert Gilewski ◽  
Dariusz Kopyciński ◽  
Edward Guzik ◽  
Andrzej Szczęsny

One of the problems with recycling is that of widespread contaminated steel scrap with an unwanted aluminum addition. In this paper, we will present a specific solution to this problem. The implementation of high-aluminum cast iron production has been considered. This cast iron is a cheap material resistant to high temperatures; additionally, it has increased abrasion resistance. Despite the above-mentioned advantages, high-aluminum cast iron has not been widely used in the industry so far, due to the difficulties encountered during machining and the occurrence of the phenomenon of spontaneous disintegration. The paper presents a method for replacing aluminum carbide with titanium carbide or tungsten carbide. This research shows that the carbide replacement procedure is sufficient in stopping the phenomenon of self-disintegration of a casting made of high-aluminum cast iron. Moreover, a new material was obtained, i.e., high-aluminum cast iron with precipitates of hard tungsten carbide and flake graphite. When considering the abrasive resistance of this material, flake graphite can be treated as the natural lubricant phase and tungsten carbide precipitation, as the hardening phase.


2001 ◽  
Vol 13 (3) ◽  
pp. 183-186
Author(s):  
Susumu TAKAMORI ◽  
Yoshiaki OSAWA ◽  
Kohmei HALADA

2013 ◽  
Vol 13 (3) ◽  
pp. 30-36 ◽  
Author(s):  
Z. Ignaszak ◽  
J-B. Prunier

Abstract The paper summarizes research realized by the author in laboratory and industrial conditions (foundries of cast steel and cast iron, castings up to 50 tons) on the effects of the chemically hardened molding sands regeneration using hard/soft rubbing in the dry reclamation. A reference was simultaneously made to advisability of application of the thermal regeneration in conditions, where chromite amount in the circulating (reclaimed) molding sand goes as high as above ten percent. An advisability of connecting standard and specialized methods of examination of the reclaimed sands and molding sands made using it was pointed out. A way of application of studies with the Hot Distortion Plus® method modified by the author for validation of modeling of the thermo-dynamic phenomena in the mold was shown.


2021 ◽  
Vol 1781 (1) ◽  
pp. 012050
Author(s):  
A Josan ◽  
E Ardelean ◽  
M Ardelean ◽  
V Puţan

2014 ◽  
Vol 59 (3) ◽  
pp. 1037-1040 ◽  
Author(s):  
I. Vasková ◽  
M. Hrubovčáková ◽  
J. Malik ◽  
Š. Eperješi

Abstract Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1772 ◽  
Author(s):  
Maria de los Angeles Cortes ◽  
Raquel de la Campa ◽  
Maria Luisa Valenzuela ◽  
Carlos Díaz ◽  
Gabino A. Carriedo ◽  
...  

During the last number of years a variety of crystallization-driven self-assembly (CDSA) processes based on semicrystalline block copolymers have been developed to prepare a number of different nanomorphologies in solution (micelles). We herein present a convenient synthetic methodology combining: (i) The anionic polymerization of 2-vinylpyridine initiated by organolithium functionalized phosphane initiators; (ii) the cationic polymerization of iminophosphoranes initiated by –PR2Cl2; and (iii) a macromolecular nucleophilic substitution step, to prepare the novel block copolymers poly(bistrifluoroethoxy phosphazene)-b-poly(2-vinylpyridine) (PTFEP-b-P2VP), having semicrystalline PTFEP core forming blocks. The self-assembly of these materials in mixtures of THF (tetrahydrofuran) and 2-propanol (selective solvent to P2VP), lead to a variety of cylindrical micelles of different lengths depending on the amount of 2-propanol added. We demonstrated that the crystallization of the PTFEP at the core of the micelles is the main factor controlling the self-assembly processes. The presence of pyridinyl moieties at the corona of the micelles was exploited to stabilize gold nanoparticles (AuNPs).


2016 ◽  
Vol 16 (3) ◽  
pp. 157-161 ◽  
Author(s):  
M. Hrubovčáková ◽  
I. Vasková ◽  
M. Benková ◽  
M. Conev

Abstract The main bulk density representation in the molding material is opening material, refractory granular material with a particle size of 0.02 mm. It forms a shell molds and cores, and therefore in addition to activating the surface of the grain is one of the most important features angularity and particle size of grains. These last two features specify the porosity and therefore the permeability of the mixture, and thermal dilatation of tension from braking dilation, the thermal conductivity of the mixture and even largely affect the strength of molds and cores, and thus the surface quality of castings. [1] Today foundries, which use the cast iron for produce of casts, are struggling with surface defects on the casts. One of these defects are veining. They can be eliminated in several ways. Veining are foundry defects, which arise as a result of tensions generated at the interface of the mold and metal. This tension also arises due to abrupt thermal expansion of silica sand and is therefore in the development of veining on the surface of casts deal primarily influences and characteristics of the filler material – opening material in the production of iron castings.


Author(s):  
N. I. Gabelchenko ◽  
N. A. Kidalov ◽  
A. A. Belov ◽  
M. D. Bezmogorychnyy ◽  
A. I. Gabelchenko

The work is devoted to the study of the effect of slowing down the cooling rate in the interval of eutectic transformation on the structure and mechanical properties of castings from gray doeutectic iron. To slow down the cooling rate in the interval of eutectic transformation, an exothermic carbon-containing additive, fuel oil M-100, was used. It is shown that the use of controlled cooling can significantly increase the quality index of cast iron without introducing additional alloying elements into the composition of cast iron.


Sign in / Sign up

Export Citation Format

Share Document