scholarly journals Modeling and Analysis of a SiC Microstructure-Based Capacitive Micro-Accelerometer

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6222
Author(s):  
Xiang Tian ◽  
Wei Sheng ◽  
Zhanshe Guo ◽  
Weiwei Xing ◽  
Runze Tang

In this study, a comb-type capacitive accelerometer based on a silicon carbide (SiC) microstructure is presented and investigated by the finite element method (FEM). It has the advantages of low weight, small volume, and low cross-coupling. Compared with silicon(111) accelerometers with the same structure, it has a higher natural frequency. When the accelerometer vibrates, its resistive force consists of two main components: a viscous damping and an elastic damping force. It was found that viscous damping dominates at low frequency, and elastic damping dominates at high frequency. The second-order linear system of the accelerometer was analyzed in the time-frequency domain, and its dynamic characteristics were best when the gap between the capacitive plates was 1.23 μm. The range of this accelerometer was 0–100 g, which is 1.64 times that of a silicon(111) accelerometer with the same structure. In addition, the accelerometer could work normally at temperatures of up to 1200 °C, which is much higher than the working temperatures of silicon devices. Therefore, the proposed accelerometer showed superior performance compared to conventional silicon-based sensors for inertial measurements.

Author(s):  
Z. J. Huang ◽  
B. J. O’Donnell ◽  
T. W. Yung ◽  
S. T. Slocum

ExxonMobil Upstream Research Company developed an advanced model test method to determine reliable damping values for predicting low frequency motions of an FLNG barge and an LNG carrier. Since viscous damping forces are a very small portion of the total force on the model, how to separate the viscous forces from the total forces is the key technical challenge. To better isolate viscous damping forces, an inertial compensation system consisting of springs was employed in the test. The spring stiffness was designed such that the restoring force cancelled the large inertial loads at the oscillation frequency. Furthermore, double-body models were built and were deeply submerged to minimize surface wave damping. With such an experimental setup, the total force measured was mainly the viscous damping force. Viscous damping was derived from the measured force and motion time histories.


Author(s):  
Z. J. Huang ◽  
B. J. O’Donnell ◽  
T. W. Yung ◽  
S. T. Slocum

ExxonMobil Upstream Research Company developed an advanced model test method to determine reliable damping values for predicting low frequency motions of an FLNG barge and an LNG carrier [1]. An inertial compensation system was introduced in the test to confidently isolate the relatively very small viscous damping force from the total measured forces in the forced oscillation tests. In the system, the spring stiffness in the restoring mechanism was tuned such that the test was done near resonance. This method has been successfully applied to ExxonMobil forced oscillation tests to measure damping of deeply submerged, double body models. Three types of motions were generated in the tests: sinusoidal motions, decay motions and motions with multiple frequencies. In this paper, the authors attempt to correlate the damping obtained from decay tests and from tests with motions of multiple frequency components. Findings from this work help determine damping for predictions of full scale motion in irregular waves.


Author(s):  
Z. Huang ◽  
S. Ryu ◽  
D. Lee ◽  
C. S. Hughes

For a turret-moored Floating Liquefied Natural Gas Plant (FLNG), it is important to use confidently derived low frequency viscous damping coefficients in the prediction of its motions and mooring loads in wind, wave and current conditions. In this paper we present our recent experimental work on the low frequency sway and yaw viscous damping in calm water and in current. In general, damping force is a relatively small portion of the total hydrodynamic force on an oscillatory model. In a previous ExxonMobil damping test in calm water (Huang et al., 2010), i.e. without current and wave, a deeply submerged double-body model was forced to oscillate to avoid surface wave contamination. An inertia compensation system was also designed to cancel the inertia force and the restoring force during oscillations, then the measured force was mainly damping force. Because of the schedule constraints of the present study, it was not possible to perform the submerged oscillation test. Instead, a forced oscillation test in water surface was performed based on KC-number and β-number. In order to obtain reliable damping coefficients, we had to carefully design the test conditions, i.e. current speeds, oscillation amplitudes and frequencies so that an adequate portion of damping force within the total force could be achieved with no significant surface waves that could contaminate the damping results being generated by the oscillating model. Good damping results were obtained. To check the acceptance of the test method based on Froude scaling, a limited number of tests were performed in which the oscillation amplitudes and frequencies were scaled down based on the Froude scaling. Magnitudes of the measured force and moment are significantly low. The time series of the measurements have drifting and significant noise. We could not confidently determine viscous damping results from the measurements.


2020 ◽  
Author(s):  
Hao LUO ◽  
Kohju Ikago

Rate-independent linear damping (RILD) demonstrates similar performance to that of linear viscous damping for the same loss factor when incorporated in a structure to control seismic response displacement. Nevertheless, the damping force generated by the RILD is relatively low in frequency ranges higher than the natural frequency of the primary structure. This leads to efficient displacement control with low damping force and floor response acceleration when RILD is integrated with low-frequency structures. However, the noncausality of RILD hinders its practical applications, and thus, causal models are widely studied to mimic the RILD behavior.This paper proposes a causal model of RILD using Maxwell elements whose damping force is generated according to the fractional-order derivative of displacement. The proposed model, further represented by a fractional-order damping function, is found to be a unifying model that includes existing causal RILD models from literature, thereby providing further insights to better understand the nature of RILD.Furthermore, several methods were examined to physically realize the proposed model.


Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bocheng Wang

AbstractIn this paper, we analyzed the spatial and temporal causality and graph-based centrality relationship between air pollutants and PM2.5 concentrations in China from 2013 to 2017. NO2, SO2, CO and O3 were considered the main components of pollution that affected the health of people; thus, various joint regression models were built to reveal the causal direction from these individual pollutants to PM2.5 concentrations. In this causal centrality analysis, Beijing was the most important area in the Jing-Jin-Ji region because of its developed economy and large population. Pollutants in Beijing and peripheral cities were studied. The results showed that NO2 pollutants play a vital role in the PM2.5 concentrations in Beijing and its surrounding areas. An obvious causality direction and betweenness centrality were observed in the northern cities compared with others, demonstrating the fact that the more developed cities were most seriously polluted. Superior performance with causal centrality characteristics in the recognition of PM2.5 concentrations has been achieved.


2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Jingang Zhan ◽  
Hongling Shi ◽  
Yong Wang ◽  
Yixin Yao

Ice sheet changes of the Antarctic are the result of interactions among the ocean, atmosphere, and ice sheet. Studying the ice sheet mass variations helps us to understand the possible reasons for these changes. We used 164 months of Gravity Recovery and Climate Experiment (GRACE) satellite time-varying solutions to study the principal components (PCs) of the Antarctic ice sheet mass change and their time-frequency variation. This assessment was based on complex principal component analysis (CPCA) and the wavelet amplitude-period spectrum (WAPS) method to study the PCs and their time-frequency information. The CPCA results revealed the PCs that affect the ice sheet balance, and the wavelet analysis exposed the time-frequency variation of the quasi-periodic signal in each component. The results show that the first PC, which has a linear term and low-frequency signals with periods greater than five years, dominates the variation trend of ice sheet in the Antarctic. The ratio of its variance to the total variance shows that the first PC explains 83.73% of the mass change in the ice sheet. Similar low-frequency signals are also found in the meridional wind at 700 hPa in the South Pacific and the sea surface temperature anomaly (SSTA) in the equatorial Pacific, with the correlation between the low-frequency periodic signal of SSTA in the equatorial Pacific and the first PC of the ice sheet mass change in Antarctica found to be 0.73. The phase signals in the mass change of West Antarctica indicate the upstream propagation of mass loss information over time from the ocean–ice interface to the southward upslope, which mainly reflects ocean-driven factors such as enhanced ice–ocean interaction and the intrusion of warm saline water into the cavities under ice shelves associated with ice sheets which sit on retrograde slopes. Meanwhile, the phase signals in the mass change of East Antarctica indicate the downstream propagation of mass increase information from the South Pole toward Dronning Maud Land, which mainly reflects atmospheric factors such as precipitation accumulation.


2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Sign in / Sign up

Export Citation Format

Share Document