scholarly journals On the Machinability Evolution in Asymmetric Milling of TC25 Ti Alloy Aiming at High Performance Machining

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7306
Author(s):  
Xueli Song ◽  
Hongshan Zhang

In this paper, the evolutions of cutting force, cutting temperature, and surface roughness, and the corresponding machinability in asymmetric up-milling of TC25 alloy are investigated. The results indicated that radial depth of cut generated opposite influence on the cutting force/cutting temperature versus surface roughness. The reason can be accounted as the intertwining of feed marks at low radial depth of cut, and the mechanism of hard cutting at a high radial depth of cut. Moreover, the asymmetry has a significant effect on the machinability in asymmetry up-milling TC25 alloy. Changing the asymmetry, i.e., the radial depth of cut, can alter the machinability while maintain the balanced development of various indexes. The machinability reaches the best when the radial depth of cut is ae = 8 mm. The axial depth of cut and feed per tooth should be selected as large as possible to avoid work hardening and to improve machining efficiency in asymmetric up-milling TC25 alloy. The cutting speed should be controlled within Vc = 100–120 m/min to obtain better machinability. On the basis of this research, it is expected to find optimized milling parameters to realize high efficiency milling of TC25 alloy.

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Muhammad Yanis ◽  
Amrifan Saladin Mohruni ◽  
Safian Sharif ◽  
Irsyadi Yani

Thin walled titanium alloys are mostly applied in the aerospace industry owing to their favorable characteristic such as high strength-to-weight ratio. Besides vibration, the friction at the cutting zone in milling of thin-walled Ti6Al4V will create inconsistencies in the cutting force and increase the surface roughness. Previous researchers reported the use of vegetable oils in machining metal as an effort towards green machining in reducing the undesirable cutting friction. Machining experiments were conducted under Minimum Quantity Lubrication (MQL) using coconut oil as cutting fluid, which has better oxidative stability than other vegetable oil. Uncoated carbide tools were used in this milling experiment. The influence of cutting speed, feed and depth of cut on cutting force and surface roughness were modeled using response surface methodology (RSM) and artificial neural network (ANN). Experimental machining results indicated that ANN model prediction was more accurate compared to the RSM model. The maximum cutting force and surface roughness values recorded are 14.89 N, and 0.161 µm under machining conditions of 125 m/min cutting speed, 0.04 mm/tooth feed, 0.25 mm radial depth of cut (DOC) and 5 mm axial DOC. 


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2015 ◽  
Vol 1115 ◽  
pp. 86-89
Author(s):  
Roshaliza Hamidon ◽  
Erry Y.T. Adesta ◽  
Muhammad Riza

In pocketing operation for mold and die, the variation of tool engagement angle causes variation in the cutting force and also cutting temperature. The objective of this study is to investigate the effect of tool engagement on cutting temperature when using the contour in tool path strategy for different cutting speeds. Cutting speeds of 150, 200 and 250m/min, feedrate from 0.05, 0.1, 0.15 mm/tooth and depths of cut of 0.1, 0.15 and 0.2 mm were applied for the cutting process. The result shows that by increasing cutting speed, the cutting temperature would rise. Varying the tool engagement also varied the cutting temperature. This can be seen clearly when the tool makes a 90oturn and along the corner region. Along the corner, the engagement angle varies accordingly with the radial depth of cut.


Author(s):  
Srinu Gugulothu ◽  
Vamsi Krishna Pasam

In this study, an attempt is made to examine the machining response parameters in turning of AISI 1040 steel under different lubrication environment. Subsequently, design of experiment technique Response surface methodology (RSM) is used for analyzing machining performance by varying cutting conditions with the use of 2wt% of CNT/MoS2(1:2) HNCF. Regression models are developed for multiple machining responses. Optimization is performed for these models by using desirability function, which converts multi-objective into single objective. Then the optimal setting parameters for single objective is found. Significant reduction in main cutting force (Fz), cutting temperature (T), surface roughness(Ra) and tool flank wear (Vb) are found with the use of 2wt% of CNT/MoS2(1:2) HNCF compared to other lubrication environment. Significant factors that affect the main cutting force (Fz), the temperature in the cutting zone are cutting speed, feed rate and depth of cut. Parameter depth of cut has an insignificant effect on tool flank wear and surface roughness (Ra). The optimal cutting conditions for four multi-objective optimization of main cutting force (Fz), cutting temperature, surface roughness (Ra) and tool flank wear are found to be cutting speed 70.25 m/min, feed 0.13 mm/rev and doc 0.5mm at desirability value of 0.907.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2016 ◽  
Vol 836-837 ◽  
pp. 20-28
Author(s):  
Li Min Shi ◽  
Cheng Yang ◽  
Qi Jun Li

Titanium alloy Ti6Al4V has poor machinability, which leads to high unit cutting force and cutting temperature, rapid tool failure. In this study, the effect of the cutting speed, feed rate and cooling condition on cutting force and cutting temperature is critically analysed by turning experiment. At the same time, the relationship is established among tool wear, cutting force and cutting temperature. This investigation has shown that cutting speed is the decisive factor which increasing cutting force and cutting temperature. In the process of turning, tool wear results in high amounts of heat and mechanical stress, which leads to serious tool wear. The Minimal Quantity Lubrication reduces the frictional condition at the chip-tool, decreases cutting force and cutting temperature, and delays the tool failure.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


Sign in / Sign up

Export Citation Format

Share Document