scholarly journals High-Efficiency Ultrathin Si-Based Solar Cells by Cascading Dilute-Nitride GaNAsP

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7415
Author(s):  
Yen-Ju Lin ◽  
David Jui-Yang Feng ◽  
Tzy-Rong Lin

Thin-film solar cells are currently an important research subject. In this study, a lattice-matched GaNAsP/Si tandem cell was designed. We adopted the drift-diffusion model to analyze the power conversion efficiency (PCE) of the solar cell. To find the maximum solar cell PCE, the recombination terms and the interlayer between subcells was omitted. For an optimal tandem cell PCE, this study analyzed the mole fraction combinations of GaNAsP and the thickness combinations between the GaNAsP and the Si subcells of the tandem cell. Our results showed the superiority of the tandem cell over the Si cell. The 4.5 μm tandem cell had a 12.7% PCE, the same as that of the 10.7 μm Si cell. The 11.5 μm tandem cell had 20.2% PCE, while the 11.5 μm Si cell processed 12.7% PCE. We also analyzed the Si subcell thickness ratio of sub-12 μm tandem cells for maximum PCE. The tandem cell with a thickness between 40% to 70% of a Si cell would have a max PCE. The ratio depended on the tandem cell thickness. We conclude that the lattice-matched GaNAsP/Si tandem cell has potential for ultrathin thin Si-based solar cell applications.

2014 ◽  
Vol 116 (19) ◽  
pp. 194504 ◽  
Author(s):  
Matthew P. Lumb ◽  
Myles A. Steiner ◽  
John F. Geisz ◽  
Robert J. Walters

2015 ◽  
Vol 8 (1) ◽  
pp. 303-316 ◽  
Author(s):  
Abd. Rashid bin Mohd Yusoff ◽  
Dongcheon Kim ◽  
Hyeong Pil Kim ◽  
Fabio Kurt Shneider ◽  
Wilson Jose da Silva ◽  
...  

We propose that 1 + 1 + 1 triple-junction solar cells can provide an increased efficiency, as well as a higher open circuit voltage, compared to tandem solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Ali Haghighat Bayan ◽  
Faramarz Afshar Taromi ◽  
Massimiliano Lanzi ◽  
Filippo Pierini

AbstractOver the last decade, nanotechnology and nanomaterials have attracted enormous interest due to the rising number of their applications in solar cells. A fascinating strategy to increase the efficiency of organic solar cells is the use of tailor-designed buffer layers to improve the charge transport process. High-efficiency bulk heterojunction (BHJ) solar cells have been obtained by introducing hollow core polyaniline (PANI) nanofibers as a buffer layer. An improved power conversion efficiency in polymer solar cells (PSCs) was demonstrated through the incorporation of electrospun hollow core PANI nanofibers positioned between the active layer and the electrode. PANI hollow nanofibers improved buffer layer structural properties, enhanced optical absorption, and induced a more balanced charge transfer process. Solar cell photovoltaic parameters also showed higher open-circuit voltage (+ 40.3%) and higher power conversion efficiency (+ 48.5%) than conventional architecture BHJ solar cells. Furthermore, the photovoltaic cell developed achieved the highest reported efficiency value ever reached for an electrospun fiber-based solar cell (PCE = 6.85%). Our results indicated that PANI hollow core nanostructures may be considered an effective material for high-performance PSCs and potentially applicable to other fields, such as fuel cells and sensors.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hervé Joël Tchognia Nkuissi ◽  
Luc Leroy Mambou Ngueyep ◽  
Abdouramani Dadjé ◽  
Guy Molay Tchapga Gnamsi ◽  
André Chamgoué Chéagé ◽  
...  

Cu2Zn1−yFeySnS4-based solar cells with different mole fractions of iron have been analyzed using numerical simulations in this study. The analysis deals with the effect of the iron content on the overall electrical performance of solar cells. Results revealed that the Voc is affected by the increase of the iron content even if it improves the other parameters. We found that the CZFTS solar cell with a mole fraction of iron equal to 1 (CFTS) showed the best results in terms of power conversion efficiency (PCE). Moreover, variations of several structural and physical parameters of the buffer CdS and the best absorber CFTS on the overall electrical characteristics of the cell were investigated. Simulations showed promising results with PCE of 20.35%, Jsc of 26.09 mA/cm2, Voc of 0.93 V, and FF of 83.93%. The results obtained can serve as a basis for the design and manufacture of high-efficiency CZFTS solar cells.


2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Lucky Agarwal

Considering the current research interest in Organic / Inorganic (ZnO) hybrid solar cells structures in developing advanced photovoltaic devices, three different types of solar cell structures are proposed. In the proposed structures, hybrid solar cell composed of ZnO nanoparticles are used as an electron-acceptor material and PEDOT:PSS is intruded in between the nanoparticles, which reported to possesses power-conversion efficiency in excess of 8%. The use of p-ZnO layer results to improve the device performance on the rigid substrate. The power-conversion efficiency of the developed solar cell was found to be as high as 10% when measured under AM 1.5G illumination. Further, simulations have been carried out whose results are in line with experimental results.


2019 ◽  
Vol 3 (6) ◽  
pp. 1085-1096 ◽  
Author(s):  
Leiping Duan ◽  
Xianyi Meng ◽  
Yu Zhang ◽  
Haimang Yi ◽  
Ke Jin ◽  
...  

The ternary organic solar cell is a promising technology towards high power conversion efficiency.


2004 ◽  
Vol 836 ◽  
Author(s):  
Steven A. Ringel ◽  
Carrie L. Andre ◽  
Matthew Lueck ◽  
David Isaacson ◽  
Arthur J. Pitera ◽  
...  

ABSTRACTThe monolithic integration of high efficiency III-V compound solar cell materials and devices with lower-cost, robust and scaleable Si substrates has been a driving force in photovoltaics (PV) basic research for decades. Recent advances in controlling mismatch-induced defects that result from structural and chemical differences between III-V solar cell materials and Si using a combination of SiGe interlayers and monolayer-scale control of III-V/IV interfaces, have led to a series of fundamental advances at the material and device levels, which establish that the great potential of III-V/Si PV is within reach. These include demonstrations of GaAs epitaxial layers on Si that are anti-phase domain-free with verified dislocation densities at or below 1×106 cm−2 and negligible interface diffusion, minority carrier lifetimes for GaAs on Si in excess of 10 ns, single junction GaAs-based solar cells on Si with open circuit voltages (Voc) in excess of 980 mV, efficiencies beyond 18%, and area-independent PV characteristics up to at least 4 cm2. These advances are attributed in large part to the use of a novel “engineered Si substrate” based on compositionally-graded SiGe buffers such that a high-quality, low defect density, relaxed, “virtual” Ge substrate could be developed that can support lattice-matched III-V epitaxy and thus merge III-V technology based on the GaAs (or Ge) lattice constant with Si wafers. This paper focuses on recent results that extend this work to the first demonstration of high performance III-V dual junction solar cells on SiGe/Si. Open circuit voltages in excess of 2 V at one-sun have been obtained for the conventionally “lattice-matched” In0.49Ga0.51P/GaAs dual junction cells on inactive, engineered SiGe/Si; to our knowledge is the first demonstration of > 2V solar power generation on a Si wafer. Comparisons with identical cells on GaAs substrates reveal that the Voc on engineered Si retains more than 94% of its homoepitaxial value, and that at present both DJ/GaAs and DJ/SiGe/Si cells are similarly limited by current mismatch in these early cells, and not fundamental defect factors associated with the engineered Si substrates.


2006 ◽  
Vol 129 (3) ◽  
pp. 336-339 ◽  
Author(s):  
C. Algora ◽  
I. Rey-Stolle ◽  
I. García ◽  
B. Galiana ◽  
M. Baudrit ◽  
...  

Concentration photovoltaic (PV) based on III–V solar cells is one of the most promising technologies for dramatically reducing the cost of PV electricity. In order to reduce costs, a high efficiency is usually pursued. This is the main reason for the huge development of multijunction cells (MJCs) which are able to achieve very high efficiencies thanks to their more efficient use of the solar spectrum. In the first stage, our approach to reduce the cost of photovoltaic electricity consists of a further development of the lattice matched GaInP∕GaAs dual junction solar cell in order to achieve efficiencies of over 30% at 1000 suns (AM1.5D low aerosol optical depth (AOD)). In the second stage, this approach will allow us to develop lattice matched GaInP∕Ga(In)As∕Ge triple junction solar cells with higher efficiency and lower cost. In this technical brief, we have set out the philosophy, including a brief incursion into economics, and our first results of dual-junction solar cells for high concentrator applications. Our best result is an efficiency of 27.6% at 180 suns while at 1000 suns the efficiency is 26% (AM1.5D low AOD). The price of a PV installation based on our best solar cell to date (efficiency of 26% operating at 1000 suns) would be 3.6$∕Wp. For solar cells with efficiencies of 30% at 1000 suns, the price after a cumulated production of 10MWp of a PV installation would be 3.3$∕Wp. The efficiencies attained (∼26%) at 1000 suns although still far from our objective of 30%, establish a reasonable starting point for future developments. It is evident that the conservative design implemented has much room for improvement which is now under development in our lab.


2013 ◽  
Vol 1538 ◽  
pp. 161-166 ◽  
Author(s):  
Rebecca Jones-Albertus ◽  
Emily Becker ◽  
Robert Bergner ◽  
Taner Bilir ◽  
Daniel Derkacs ◽  
...  

ABSTRACTHigh quality dilute nitride subcells for multijunction solar cells are achieved using GaInNAsSb. The effects on device performance of Sb composition, strain and purity of the GaInNAsSb material are discussed. New world records in efficiency have been set with lattice-matched InGaP/GaAs/GaInNAsSb triple junction solar cells and a roadmap to 50% efficiency with lattice-matched multijunction solar cells using GaInNAsSb is shown.


2016 ◽  
Vol 4 (34) ◽  
pp. 8020-8026 ◽  
Author(s):  
Shixun Wang ◽  
Ting Shen ◽  
Huiwen Bai ◽  
Bo Li ◽  
Jianjun Tian

Quantum dot sensitized solar cell assembled with a nanostructured Cu3Se2 counter electrode exhibits a high power conversion efficiency of 5.05%.


Sign in / Sign up

Export Citation Format

Share Document