scholarly journals Preparation of Mn2+ Doped Piperazine Phosphate as a Char-Forming Agent for Improving the Fire Safety of Polypropylene/Ammonium Polyphosphate Composites

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7589
Author(s):  
Fuqiang Dong ◽  
Zhonglin Luo ◽  
Biaobing Wang

A piperazine phosphate doped with Mn2+ (HP-Mn), as a new char-forming agent for intumescent flame retardant systems (IFR), was designed and synthesized using 1-hydroxy ethylidene-1,1-diphosphonic acid, piperazine, and manganese acetate tetrahydrate as raw materials. The effect of HP-Mn and ammonium polyphosphate (APP) on the fire safety and thermal stability of polypropylene (PP) was investigated. The results showed that the combined incorporation of 25 wt.% APP/HP-Mn at a ratio of 1:1 endowed the flame retardant PP (PP6) composite with the limiting oxygen index (LOI) of 30.7% and UL-94 V-0 rating. In comparison with the pure PP, the peak heat release rate (PHRR), the total heat release (THR), and the smoke production rate (PSPR) of the PP6 were reduced by 74%, 30%, and 70%, respectively. SEM and Raman analysis of the char residues demonstrated that the Mn2+ displayed a catalytic cross-linking charring ability to form a continuous and compact carbon layer with a high degree of graphitization, which can effectively improve the flame retardancy of PP/APP composites. A possible flame-retardant mechanism was proposed to reveal the synergistic effect between APP and HP-Mn.

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2662
Author(s):  
Sangram P. Bhoite ◽  
Jonghyuck Kim ◽  
Wan Jo ◽  
Pravin H. Bhoite ◽  
Sawanta S. Mali ◽  
...  

The compatibility and coating ratio between flame retardant materials and expanded polystyrene (EPS) foam is a major impediment to achieving satisfactory flame retardant performance. In this study, we prepared a water-based intumescent flame retardant system and methylene diphenyl diisocyanate (MDI)-coated expandable polystyrene microspheres by a simple coating approach. We investigated the compatibility, coating ratio, and fire performance of EPS- and MDI-coated EPS foam using a water-based intumescent flame retardant system. The microscopic study revealed that the water-based intumescent flame retardant materials were successfully incorporated with and without MDI-coated EPS microspheres. The cone calorimeter tests (CCTs) of the MDI-coated EPS containing water-based intumescent flame retardant materials exhibited better flame retardant performance with a lower total heat release (THR) 7.3 MJ/m2, peak heat release rate (PHRR) 57.6 kW/m2, fire growth rate (FIGRA) 2027.067 W/m2.s, and total smoke production (TSP) 0.133 m2. Our results demonstrated that the MDI-coated EPS containing water-based intumescent flame retardant materials achieved flame retarding properties as per fire safety standards.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 968
Author(s):  
Hatem Abuhimd ◽  
Tentu Nageswara Rao ◽  
Jung-il Song ◽  
Prashanthi Yarasani ◽  
Faheem Ahmed ◽  
...  

Ethylenediamine modified ammonium polyphosphate (EDA-MAPP) and charring-foaming agents (CFA) were prepared using a simple chemical method and further used to make intumescent flame retardant coatings based on epoxy resin. The content of MAPP and CFA was fixed at a ratio of 2:1. Nanoparticles of magnesium aluminate (MgAl2O4 NPs) have been introduced into the flame retardant coating formulation in various quantities to evaluate the promotional action of MgAl2O4 NPs with a flame retardant coating system. The promotional action of MgAl2O4 NPs on the flame retardant coating formulation was studied using a vertical burning test (UL-94V), limiting oxygen index (LOI), thermogravimetric analysis (TGA) and Fourier transform infra-red spectroscopy (FTIR). The UL-94V results indicated that the addition of MgAl2O4 effectively increased flame retardancy and met the V-0 rating at each concentration. The TGA results revealed that the incorporation of MgAl2O4 NPs at each concentration effectively increased the thermal stability of the flame retardant coating system. Cone-calorimeter experiments show that MgAl2O4 NPs effectively decreased peak heat release rate (PHRR) and total heat release (THR). The FTIR results indicated that MgAl2O4 NPs can react with MAPP and generate a dense char layer that prevents the transfer of oxygen and heat.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 550-560
Author(s):  
Huaifang Wang ◽  
Yingli Cai ◽  
Zhiming Jiang ◽  
Shengnan Guo ◽  
Ping Zhu

AbstractA phosphoramidate flame retardant (dimethyl N,N-bis(2-hydroxyletheyl)phosphoramidate, DMBHP) was synthesized and applied to cotton fabrics for enhancing the flame retardancy. The structure of DMBHP was characterized by FT-IR and NMR. The flame retardancy and combustion behavior of the treated cotton fabrics were evaluated using the vertical flammability test (VFT), limiting oxygen index (LOI), and the cone calorimetric test. Moreover, to further analyze the flame retardant action of DMBHP in cotton fabrics, thermal degradability of the treated fabrics, as well as the chemical structure, surface morphology, and element contents of the char residue of the DMBHP-treated fabrics were also evaluated. The results show that, after treating with DMBHP, the cotton fabrics acquired a LOI value from 18.1 to 31.1 with the concentration increasing to 30% and self-extinguished in VFT tests when treated with up to 15% DMBHP. Besides, the total heat release and the peak heat release rate of DMBHP (30%)-treated fabric decreased obviously compared with the pure cotton along with more residue retained. TG, SEM, and EDS results of treated cotton fabric and the corresponding residue after burning showed that DMBHP has the capability of enhancing char formation. In addition, DMBHP will confer cotton fabrics a certain durability against washing with the help of 1,2,3,4-butanetetracarboxylic acid (BTCA) and citric acid (CA).


2020 ◽  
Vol 32 (6) ◽  
pp. 710-718
Author(s):  
Zhengzhou Wang ◽  
Xin Gao ◽  
Wenfeng Li

Flame-retardant epoxy (EP) resin/cyanate ester (CE) composites were prepared with 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and wollastonite (Wo). The combustion behavior of the flame-retardant EP/CE composites was investigated by limiting oxygen index (LOI), UL-94, and cone calorimeter tests. It is found that the EP/CE composite containing 7 wt% DOPO and 3 wt% Wo (sample 7DO/3Wo/EP/CE) exerts the best flame retardancy (LOI 35.5% and UL-94 V-0 rating). The peak heat release rate and total heat release of sample 7DO/3Wo/EP/CE increase slightly, while total smoke release decreases about 14% compared with the EP/CE composite containing 10 wt% DOPO (sample 10DO/EP/CE). Thermal studies indicate that the glass transition temperature and temperature at 5% mass loss of sample 7DO/3Wo/EP/CE are higher than that of sample 10DO/EP/CE. Moreover, the mechanical properties of EP/CE composites were investigated.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4035 ◽  
Author(s):  
Junsheng Wang ◽  
Lei Xue ◽  
Bi Zhao ◽  
Guide Lin ◽  
Xing Jin ◽  
...  

The intumescent flame retardant ethylene–propylene–diene rubber (EPDM) was prepared using intumescent flame retardant (IFR), including ammonium polyphosphate (APP) /pentaerythrotol (PER) and expandable graphite (EG), as the flame retardant agent. The effects of IFR and EG on the flame retardancy, fire behavior, and thermal stability of the EPDM were investigated. The results show that IFR and EG have excellent synergistic flame retardant effects. When the mass ratio of IFR to EG is 3:1 and the total addition content is 40 phr, the limiting oxygen index (LOI) value of the EPDM material (EPDM/IFR/EG) can reach 30.4%, and it can pass a V-0 rating in the vertical combustion (UL-94) test. Meanwhile, during the cone calorimetry test, the heat release rate and total heat release of EPDM/IFR/EG are 69.0% and 33.3% lower than that of the pure EPDM, respectively, and the smoke release of the material also decreases significantly, suggesting that the sample shows good fire safety. In addition, the flame retardant mechanism of IFR and EG is systematically investigated by thermogravimetric analysis/infrared spectrometry (TG-IR), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), and the results indicate that IFR and EG have only physical interaction. Moreover, the reason why IFR exhibits a poor flame retardant effect in EPDM materials is explained.


2020 ◽  
Vol 32 (10) ◽  
pp. 1169-1180 ◽  
Author(s):  
Lurong Wang ◽  
Baoping Yang ◽  
Yongliang Guo ◽  
Yabin Zhang ◽  
Niannian Wang ◽  
...  

Herein, we have successfully synthesized phosphorus/nitrogen/silicon tri-elements compound phosphazene derivative hexa-[4-( N-(3-(triethoxysilyl)propyl)acetamide)phenoxy]cyclotriphosphazene (HNTPC) from hexachlorotriphosphazenitrile, methyl 4-hydroxybenzoate, and 3-triethoxysilylpropylamine, and it was used as an additive flame retardant in epoxy resin (EP). Then, the thermal stability and flame retardancy of the composite (HNTPC/EP) were tested. Thermogravimetric analysis showed that the presence of HNTPC made EP matrix decompose at a relatively low temperature, thus promoted the formation of a stable coke layer and protected the matrix from fire. Therefore, the amount of carbon residue was markedly increased at 800°C, indicating an outstanding condensed phase flame-retardant effect. Furthermore, various combustion test data manifested that the addition of HNTPC could significantly improve the flame-retardant performance of EP. In addition, the sample could pass the vertical burning tests (UL-94) V-1 grade when the addition amount was 10% and the limiting oxygen index value was 32.6%, the peak heat release rate and total heat release rate decreased by 40.0% and 21.5%, respectively. Besides, the results of scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy also showed that HNTPC can promote the formation of carbon layer and improved the flame-retardant property of EP. Finally, the condensed phase and gas phase synergistic flame-retardant mechanism of HNTPC was proposed.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1304 ◽  
Author(s):  
Shengjie Zhu ◽  
Weiguang Gong ◽  
Ji Luo ◽  
Xin Meng ◽  
Zhong Xin ◽  
...  

A novel phosphorus-silicon flame retardant (P5PSQ) was prepared by bonding phosphate to silicon-based polysilsesquioxane (PSQ) and used as flame retardant of poly (lactic acid) (PLA). The results show that PLA with 10 wt % P5PSQ has a limiting oxygen index (LOI) 24.1%, the peak heat release rate (PHRR) and total heat release (THR) of PLA decrease 21.8% and 25.2% compared to neat PLA in cone calorimetric test, indicating that P5PSQ shows better flame retardancy in comparison to PSQ. Furthermore, the study for the morphology and composition of carbon residue after the combustion of PLA and the gas release of PLA during combustion illustrate that P5PSQ has flame retardancy in condensed phase and gas phase simultaneously. In condensed phase, phosphorus from phosphate promotes the formation of more stable and better carbon layer containing Si and P, which inhibits the transfer of heat and oxygen in the combustion. In gas phase, the phosphate in P5PSQ emits phosphorus-containing compound that can restrain the release of C–O containing products, which may have effective flame retardancy for PLA in gas phase to a certain extent. In one word, P5PSQ is denoted as a good phosphorus-silicon synergistic flame-retardant.


2021 ◽  
pp. 009524432110290
Author(s):  
Mingchao Li ◽  
Yi Wang ◽  
Chunhui Shen ◽  
Shanjun Gao

Flame retardant thermoplastic elastomer (TPE) with excellent mechanical properties and thermal oxidative aging resistance was prepared by dynamic vulcanization technology with ethylene-octene copolymer (POE) and polypropylene (PP) as raw materials. The paper first discussed the effect of the amount of vulcanizing agent on the properties of PP/POE TPE. Based on the study of tensile strength, elongation at break, cross-section morphology, processability and aging properties of TPE, it was found that the TPE prepared with 0.6 phr of bis(1-(tert-butylperoxy)-1-methylethyl)-benzene (BIPB) and 40/60 of PP/POE had the best properties. Then silicone powder (GM) is added to the traditional low-halogen bromine-phosphorus flame retardant system for flame retardant modification. The results show that the addition of GM can effectively enhance the stability of the carbon layer, prevent the material from dripping during combustion, and increase the residual carbon content of TPE at 800°C. When 3 phr of GM is combined with a bromine-phosphorus system. The comprehensive performance is the best, the limiting oxygen index (LOI) of TPE increased to 29.8%, reaching the V-0 level. At the same time, the processing fluidity and aging resistance of TPE materials have also been improved.


2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1487 ◽  
Author(s):  
Sihao Yin ◽  
Xinlin Ren ◽  
Peichao Lian ◽  
Yuanzhi Zhu ◽  
Yi Mei

We applied black phosphorene (BP) and hexagonal boron nitride (BN) nanosheets as flame retardants to waterborne polyurethane to fabricate a novel black phosphorus/boron nitride/waterborne polyurethane composite material. The results demonstrated that the limiting oxygen index of the flame-retarded waterborne polyurethane composite increased from 21.7% for pure waterborne polyurethane to 33.8%. The peak heat release rate and total heat release of the waterborne polyurethane composite were significantly reduced by 50.94% and 23.92%, respectively, at a flame-retardant content of only 0.4 wt%. The superior refractory performances of waterborne polyurethane composite are attributed to the synergistic effect of BP and BN in the gas phase and condensed phase. This study shows that black phosphorus-based nanocomposites have great potential to improve the fire resistance of polymers.


Sign in / Sign up

Export Citation Format

Share Document