scholarly journals Surface Transport Properties of Pb-Intercalated Graphene

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7706
Author(s):  
Markus Gruschwitz ◽  
Chitran Ghosal ◽  
Ting-Hsuan Shen ◽  
Susanne Wolff ◽  
Thomas Seyller ◽  
...  

Intercalation experiments on epitaxial graphene are attracting a lot of attention at present as a tool to further boost the electronic properties of 2D graphene. In this work, we studied the intercalation of Pb using buffer layers on 6H-SiC(0001) by means of electron diffraction, scanning tunneling microscopy, photoelectron spectroscopy and in situ surface transport. Large-area intercalation of a few Pb monolayers succeeded via surface defects. The intercalated Pb forms a characteristic striped phase and leads to formation of almost charge neutral graphene in proximity to a Pb layer. The Pb intercalated layer consists of 2 ML and shows a strong structural corrugation. The epitaxial heterostructure provides an extremely high conductivity of σ=100 mS/□. However, at low temperatures (70 K), we found a metal-insulator transition that we assign to the formation of minigaps in epitaxial graphene, possibly induced by a static distortion of graphene following the corrugation of the interface layer.

2000 ◽  
Vol 648 ◽  
Author(s):  
Jeffrey A. Stultz ◽  
Andrei Kolmakov ◽  
Xiaofeng Lai ◽  
Young Dok Kim ◽  
D. Wayne Goodman

AbstractMgO thin films having different defect densities are explored in this study using metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and scanning tunneling microscopy (STM). Surface point defects on MgO exhibit themselves in both the MIES and UPS spectra as a feature approximately 2 eV above the valance band, whereas extended defects are only observed spectroscopically as a broadening of the O 2p band. The interaction of NO and N2O with the MgO surface as a function of surface defect density is explored. Upon adsorption on MgO thin films at 100K, both NO and N2O show the development of three features which coincide with a standard gas phase N2O spectrum. The saturation coverage of N2O from NO adsorption increases with increasing defect density, indicating that defect sites are mainly responsible for N2O formation. STM images confirm the increase of thin film defect density upon thermal quenching.


Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


2001 ◽  
Vol 696 ◽  
Author(s):  
R. Würz ◽  
W. Bohne ◽  
W. Fuhs ◽  
J. Röhrich ◽  
M. Schmidt ◽  
...  

AbstractCaF2 films with thicknesses in the monolayer range (<20 Å) were grown on Si(111) by evaporation from a CaF2 source at UHV conditions. They were characterized ex-situ by Heavy-Ion Elastic Recoil Detection Analysis (HI-ERDA), RBS/Channeling, X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The F/Ca ratio of the films was found to depend on the growth temperature Ts and to deviate appreciably from the stoichiometric composition (F/Ca=2). Due to an interface reaction which leads to a CaF-interface layer a change from polycrystalline to epitaxial growth occurs at Ts=450°C. At higher temperature film growth started with a closed layer of CaF on top of which CaF2 layers with an increasing fraction of pinholes were formed. By means of a two-step process at different temperatures, the amount of pinholes could be strongly reduced. It was found, that buffer layers of CaF2 with a CaF interface layer introduced in Au/p-Si contacts enhance the barrier height by as much as 0.36eV to values of 0.64eV.


1991 ◽  
Vol 231 ◽  
Author(s):  
A.P. Payne ◽  
H. Kataoka ◽  
M. Farle ◽  
B.M. Clemens

AbstractThe effect of layer structure perturbations on antiferromagnetic coupling in Fe-Cr-Fe trilayer systems is investigated. By varying the sputtering pressure, the layer structure of Fe-Cr-Fe trilayers is systematically altered, as indicated by changes in the low angle superlattice spectra of multilayers fabricated under identical conditions. The effect of topographic roughness is investigated by fabricating identical trilayers on Cr buffer layers of different thickness. Scanning tunneling microscopy is used to measure surface roughness. In each case the saturation field is measured as a function of Cr interlayer thickness by means of tapered Cr interlayer structures in which the thickness of the spacer varies linearly from 0 to 28 Å upon a single substrate. Antiferromagnetic coupling is measured locally by means of the magneto-optic Kerr effect. Results show that although the coupling is diminished by structural perturbations, it is a remarkably robust effect which persists even in instances of poor layer structure.


1991 ◽  
Vol 40 (2) ◽  
pp. 187-196 ◽  
Author(s):  
T.L. Porter ◽  
T.R. Dillingham ◽  
C.Y. Lee ◽  
T.A. Jones ◽  
B.L. Wheeler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document