scholarly journals How Can We Provide Additively Manufactured Parts with a Fingerprint? A Review of Tagging Strategies in Additive Manufacturing

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 85
Author(s):  
Antonella Sola ◽  
Yilin Sai ◽  
Adrian Trinchi ◽  
Clement Chu ◽  
Shirley Shen ◽  
...  

Additive manufacturing (AM) is rapidly evolving from “rapid prototyping” to “industrial production”. AM enables the fabrication of bespoke components with complicated geometries in the high-performance areas of aerospace, defence and biomedicine. Providing AM parts with a tagging feature that allows them to be identified like a fingerprint can be crucial for logistics, certification and anti-counterfeiting purposes. Whereas the implementation of an overarching strategy for the complete traceability of AM components downstream from designer to end user is, by nature, a cross-disciplinary task that involves legal, digital and technological issues, materials engineers are on the front line of research to understand what kind of tag is preferred for each kind of object and how existing materials and 3D printing hardware should be synergistically modified to create such tag. This review provides a critical analysis of the main requirements and properties of tagging features for authentication and identification of AM parts, of the strategies that have been put in place so far, and of the future challenges that are emerging to make these systems efficient and suitable for digitalisation. It is envisaged that this literature survey will help scientists and developers answer the challenging question: “How can we embed a tagging feature in an AM part?”.

2020 ◽  
Vol 21 (6) ◽  
pp. 24-45 ◽  
Author(s):  
Cristiano Tomassoni ◽  
Oscar Antonio Peverini ◽  
Giuseppe Venanzoni ◽  
Giuseppe Addamo ◽  
Fabio Paonessa ◽  
...  

2021 ◽  
Author(s):  
Eckart Kunze ◽  
Michael Müller-Pabel ◽  
Oliver Weißenborn ◽  
Ron Luft ◽  
Johann Faust ◽  
...  

The economical production of lightweight structures with tailor-made properties and load-adapted geometry is limited using conventional technologies. Additive manufacturing processes offer a high potential to meet these requirements, where the established solutions are based primarily on thermoplastics matrix systems. From a process-technological point of view, thermoplastics enable simplified processing, but only a limited range of applications for high-performance components. These limitations are due to their comparatively low heat resistance, low melting temperatures and limited adhesion to embedded reinforcing fibers. In contrast, thermosets show high potential for realization of high- performance lightweight structures with adaptable properties. The present work employs a UV-curing thermoset resin for the impregnation of a continuous filament strand for 3D printing. The main challenge is to reconcile the crosslinking reaction of the thermoset and the process velocity during impregnation and cure. The liquid polymer must provide low initial viscosity to impregnate the filaments and a sufficiently high cure rate and dimensional stability after discharge from the print head to ensure sufficient bonding strength to the substrate. To demonstrate feasibility, a prototypic print head with UV-LED activation was designed and implemented. With a robot-guided printing platform, the 3D-deposition of continuous fiber-reinforcements without additional supporting structures can be realized. To derive initial process parameters, reaction and thermos-mechanical properties are determined by rheometer measurements. Impregnation and cure behavior of the glass fiber reinforced resin is investigated. The presented results provide a reliable process window and a straightforward process monitoring method for further enhancement of the conceived 3D printing process.


2019 ◽  
Vol 141 (05) ◽  
pp. 49-50
Author(s):  
Markus Siebold

Additive manufacturing (AM) is a process that builds parts layer-by-layer from sliced CAD models to form solid objects. Just a few years ago, 3D printing was primarily used for rapid prototyping. Due to improvements in performance, AM has the potential to become a new key technology for serial production. Innovative advances like selective laser melting (SLM) enable the manufacture of high-performance metal parts. Modern printers contain several lasers, which enables the production of multiple parts at the same time. AM includes much more than just 3D printing: It’s an end-to-end process, from design and simulation to 3D printing to post-processing.


2017 ◽  
pp. 96-103 ◽  
Author(s):  
Gillian Eggleston ◽  
Isabel Lima ◽  
Emmanuel Sarir ◽  
Jack Thompson ◽  
John Zatlokovicz ◽  
...  

In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the sugar industry with harsher processing conditions. There is an urgent need in the sugar industry to be able to remove or inactivate residual, active amylases either in factory or refinery streams or both. A survey of refineries that used amylase and had activated carbon systems for decolorizing, revealed they did not have any customer complaints for residual amylase. The use of high performance activated carbons to remove residual amylase activity was investigated using a Phadebas® method created for the sugar industry to measure residual amylase in syrups. Ability to remove residual amylase protein was dependent on the surface area of the powdered activated carbons as well as mixing (retention) time. The activated carbon also had the additional benefit of removing color and insoluble starch.


2021 ◽  
pp. 2102649
Author(s):  
Sourav Chaule ◽  
Jongha Hwang ◽  
Seong‐Ji Ha ◽  
Jihun Kang ◽  
Jong‐Chul Yoon ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


2018 ◽  
Vol 39 (7) ◽  
pp. 1700809 ◽  
Author(s):  
Xiao Kuang ◽  
Zeang Zhao ◽  
Kaijuan Chen ◽  
Daining Fang ◽  
Guozheng Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document