scholarly journals Subtyping on Live Lymphoma Cell Lines by Raman Spectroscopy

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 546
Author(s):  
Klytaimnistra Katsara ◽  
Konstantina Psatha ◽  
George Kenanakis ◽  
Michalis Aivaliotis ◽  
Vassilis M. Papadakis

Raman spectroscopy is a well-defined spectroscopic technique sensitive to the molecular vibrations of materials, since it provides fingerprint-like information regarding the molecular structure of the analyzed samples. It has been extensively used for non-destructive and label-free cell characterization, particularly in the qualitative and quantitative estimation of amino acids, lipids, nucleic acids, and carbohydrates. Lymphoma cell classification is a crucial task for accurate and prompt lymphoma diagnosis, prognosis, and treatment. Currently, it is mostly based on limited information and requires costly and time-consuming approaches. In this work, we are proposing a fast characterization and differentiation methodology of lymphoma cell subtypes based on Raman spectroscopy. The study was performed in the temperature range of 15–37 °C to identify the best cell measurement conditions. The proposed methodology is fast, accurate, and requires minimal sample preparation, resulting in a potentially promising, non-invasive strategy for early and accurate cell lymphoma characterization.

RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50027-50033 ◽  
Author(s):  
S. Bakhtiaridoost ◽  
H. Habibiyan ◽  
S. Muhammadnejad ◽  
M. Haddadi ◽  
H. Ghafoorifard ◽  
...  

Wavelet transform and SVM applied to Raman spectra makes a powerful and accurate tool for identification of rare cells such as CTCs.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 866 ◽  
Author(s):  
Shinta Mariana ◽  
Gregor Scholz ◽  
Feng Yu ◽  
Agus Budi Dharmawan ◽  
Iqbal Syamsu ◽  
...  

Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.


Author(s):  
Rusul M. Al-Shammari ◽  
Nebras Alattar ◽  
Michele Manzo ◽  
Katia Gallo ◽  
Brian J. Rodriguez ◽  
...  

2008 ◽  
Vol 232 (2) ◽  
pp. 240-247 ◽  
Author(s):  
A. MÖLDER ◽  
M. SEBESTA ◽  
M. GUSTAFSSON ◽  
L. GISSELSON ◽  
A. GJÖRLOFF WINGREN ◽  
...  

2013 ◽  
Vol 10 (86) ◽  
pp. 20130464 ◽  
Author(s):  
Aliz Kunstar ◽  
Anne M. Leferink ◽  
Paul I. Okagbare ◽  
Michael D. Morris ◽  
Blake J. Roessler ◽  
...  

Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)–poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm −1 which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs.


2008 ◽  
Vol 41 (5) ◽  
pp. 830-840 ◽  
Author(s):  
G. Schade-Kampmann ◽  
A. Huwiler ◽  
M. Hebeisen ◽  
T. Hessler ◽  
M. Di Berardino

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
William Z. Payne ◽  
Dmitry Kurouski

AbstractOur civilization has to enhance food production to feed world’s expected population of 9.7 billion by 2050. These food demands can be met by implementation of innovative technologies in agriculture. This transformative agricultural concept, also known as digital farming, aims to maximize the crop yield without an increase in the field footprint while simultaneously minimizing environmental impact of farming. There is a growing body of evidence that Raman spectroscopy, a non-invasive, non-destructive, and laser-based analytical approach, can be used to: (i) detect plant diseases, (ii) abiotic stresses, and (iii) enable label-free phenotyping and digital selection of plants in breeding programs. In this review, we critically discuss the most recent reports on the use of Raman spectroscopy for confirmatory identification of plant species and their varieties, as well as Raman-based analysis of the nutrition value of seeds. We show that high selectivity and specificity of Raman makes this technique ideal for optical surveillance of fields, which can be used to improve agriculture around the world. We also discuss potential advances in synergetic use of RS and already established imaging and molecular techniques. This combinatorial approach can be used to reduce associated time and cost, as well as enhance the accuracy of diagnostics of biotic and abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document