scholarly journals Aspects of the Synthesis of Poly(styrene-block-isobutylene-block-styrene) by TiCl4-Co-initiated Cationic Polymerization in Open Conditions

Macromol ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 243-255
Author(s):  
Miraslau I. Makarevich ◽  
Pavel A. Nikishau ◽  
Ivan A. Berezianko ◽  
Tatiana V. Glushkova ◽  
Maria A. Rezvova ◽  
...  

The cationic polymerization of isobutylene and its block copolymerization with styrene using DiCumCl/TiCl4/2,6-lutidine initiating system has been studied in open conditions. It was shown that a higher concentration of proton trap is required in open conditions as compared to the glove box technique in order to have good control over molecular weight and polydispersity. Polyisobutylenes with Mn ≤ 50,000 g mol−1 and low polydispersity (Đ ≤ 1.2) were prepared at [Lu] = 12 mM. The synthesis of poly(styrene-block-isobutylene-block-styrene) triblock copolymer (SIBS) in open conditions required the addition of proton trap into two steps, half at the beginning of the reaction and the second half together with styrene. Following this protocol, a series of triblock copolymers with different length of central polyisobutylene block (from Mn = 20,000 g mol−1 to 50,000 g mol−1) and side polystyrene blocks (Mn = 4000 g mol−1–9000 g mol−1) with low polydispersity (Đ ≤ 1.25) were synthesized. High molecular SIBS (Mn > 50,000 g mol−1) with low polydispersity (Đ < 1.3) containing longer polystyrene blocks (Mn > 6000 g mol−1) demonstrated higher tensile strength (~13.5 MPa).

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1404 ◽  
Author(s):  
Hisaaki Takeshima ◽  
Kotaro Satoh ◽  
Masami Kamigaito

In this study, we investigated direct-controlled/living cationic polymerization and copolymerization of 4-vinylguaiacol (4VG), i.e., 4-hydroxy-3-methoxystyrene, which can be derived from naturally-occurring ferulic acid, to develop novel bio-based amphiphilic polystyrenes with phenol functions. The controlled/living cationic polymerization of 4VG was achieved using the R–OH/BF3·OEt2 initiating system, which is effective for the controlled/living polymerization of petroleum-derived 4-vinylphenol in the presence of a large amount of water via reversible activation of terminal C–OH bond catalyzed by BF3·OEt2, to result in the polymers with controlled molecular weights and narrow molecular weight distributions. The random or block copolymerization of 4VG was also examined using p-methoxystyrene (pMOS) as a comonomer with an aqueous initiating system to tune the amphiphilic nature of the 4VG-derived phenolic polymers. The obtained polymer can be expected not only to be used as a novel styrenic bio-based polymer but also as a material with amphiphilic nature for some applications.


1996 ◽  
Vol 461 ◽  
Author(s):  
J. H. Laurer ◽  
J. F. Mulling ◽  
R. Bukovnik ◽  
R. J. Spontak

ABSTRACTAddition of a block-selective homopolymer to a microphase-ordered block copolymer is known to result in preferential swelling of the chemically compatible microdomain. In this work, we examine the miscibility between a triblock copolymer and a relatively low-molecular-weight, chemically dissimilar, midblock-associating homopolymer and demonstrate that the homopolymer molecules residing in the swollen midblock matrix self-assemble to avoid repulsive interactions with neighboring microdomains. We extend this investigation to include systems composed of a very low-molecular-weight, midblock-associating additive (an oil). At high oil concentrations, the glassy copolymer endblocks micellize, resulting in the formation of a thermoplastic elastomer gel.


2021 ◽  
Vol 9 ◽  
Author(s):  
Asmita Dey ◽  
Ujjal Haldar ◽  
Priyadarsi De

The foremost limitation of block copolymer synthesis is to polymerize two or more different types of monomers with different reactivity profiles using a single polymerization technique. Controlled living polymerization techniques play a vital role in the preparation of wide range of block copolymers, thus are revolutionary techniques for polymer industry. Polymers with good control over molecular weight, molecular weight distribution, chain-end functionality and architectures can be prepared by these processes. In order to improve the existing applications and create new opportunities to design a new block copolymer system with improved physical and chemical properties, the combination of two different polymerization techniques have tremendous scope. Such kinds of macromolecules may be attended by combination of homopolymerization of different monomers by post-modification techniques using a macroinitiator or by using a dual initiator which allows the combination of two mechanistically distinct techniques. This review focuses on recent advances in synthesis of block copolymers by combination of living cationic polymerization with other polymerization techniques and click chemistry.


2018 ◽  
Vol 9 (2) ◽  
pp. 193-202 ◽  
Author(s):  
S. Nehache ◽  
M. Semsarilar ◽  
A. Deratani ◽  
M. In ◽  
P. Dieudonné-George ◽  
...  

Self-assembly of ABA triblock copolymer micelles into porous materials which are subsequently used as filtration membranes.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Claudia Köster ◽  
Sebastian Pohl ◽  
Peter Kleinebudde

The binders povidone (Kollidon 30), copovidone (Kollidon VA64), hypromellose (Pharmacoat 606), and three types of hyprolose (HPC SSL-SFP, HPC SSL, and HPC SL-FP) were evaluated regarding their suitability in twin-screw wet granulation. Six mixtures of lactose and binder as well as lactose without binder were twin-screw granulated with demineralized water at different barrel fill levels and subsequently tableted. A screening run with HPC SSL determined the amount of water as an influential parameter for oversized agglomerates. Subsequent examination of different binders, especially Kollidon 30 and Kollidon VA64 resulted in large granules. All binders, except Pharmacoat 606, led to a reduction of fines compared to granulation without a binder. The molecular weight of applied hyproloses did not appear as influential. Tableting required an upstream sieving step to remove overlarge granules. Tableting was possible for all formulations at sufficient compression pressure. Most binders resulted in comparable tensile strengths, while Pharmacoat 606 led to lower and lactose without a binder to the lowest tensile strength. Tablets without a binder disintegrated easily, whereas binder containing tablets of sufficient tensile strength often nearly failed or failed the disintegration test. Especially tablets containing Pharmacoat 606 and HPC SL-FP disintegrated too slowly.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1516
Author(s):  
Dongmei Liu ◽  
Kai Gong ◽  
Ye Lin ◽  
Tao Liu ◽  
Yu Liu ◽  
...  

We investigated the interfacial properties of symmetric ternary An/AmBm/Bn and An/Am/2BmAm/2/Bn polymeric blends by means of dissipative particle dynamics (DPD) simulations. We systematically analyzed the effects of composition, chain length, and concentration of the copolymers on the interfacial tensions, interfacial widths, and the structures of each polymer component in the blends. Our simulations show that: (i) the efficiency of the copolymers in reducing the interfacial tension is highly dependent on their compositions. The triblock copolymers are more effective in reducing the interfacial tension compared to that of the diblock copolymers at the same chain length and concentration; (ii) the interfacial tension of the blends increases with increases in the triblock copolymer chain length, which indicates that the triblock copolymers with a shorter chain length exhibit a better performance as the compatibilizers compared to that of their counterparts with longer chain lengths; and (iii) elevating the triblock copolymer concentration can promote copolymer enrichment at the center of the interface, which enlarges the width of the phase interfaces and reduces the interfacial tension. These findings illustrate the correlations between the efficiency of copolymer compatibilizers and their detailed molecular parameters.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 201 ◽  
Author(s):  
Zhifei Chen ◽  
Shuxin Li ◽  
Yuwei Shang ◽  
Shan Huang ◽  
Kangda Wu ◽  
...  

A random copolymer of isobutylene (IB) and 4-vinylbenzenecyclobutylene (4-VBCB) was synthesized by cationic polymerization at −80 °C using 2-chloro-2,4,4-trimethylpentane (TMPCl) as initiator. The laws of copolymerization were investigated by changing the feed quantities of 4-VBCB. The molecular weight of the copolymer decreased, and its molecular weight distribution (MWD) increased with increasing 4-VBCB content. We proposed a possible copolymerization mechanism behind the increase in the chain transfer reaction to 4-VBCB with increasing of feed quantities of 4-VBCB. The thermal properties of the copolymers were studied by solid-phase heating and crosslinking. After crosslinking, the decomposition and glass transition temperatures (Tg) of the copolymer increased, the network structure that formed did not break when reheated, and the mechanical properties remarkably improved.


Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 143
Author(s):  
Lara Grünig ◽  
Ulrich A. Handge ◽  
Joachim Koll ◽  
Oliver Gronwald ◽  
Martin Weber ◽  
...  

In this study, a triblock copolymer was used as additive to fabricate new dual layer hollow fiber membranes with a hydrophilic active inner surface in order to improve their fouling resistance. The polymeric components of the solutions for membrane fabrication were poly(ether sulfone), poly(N-vinyl pyrrolidone), and the triblock copolymer. The additive consists of three blocks: a middle hydrophobic poly(ether sulfone) block and two outer hydrophilic alkyl poly(ethylene glycol) blocks. By varying the additive concentration in the solutions, it was possible to fabricate dual layer hollow fiber membranes that are characterized by a hydrophilic inner layer, a pure water permeance of over 1800 L/(m2 bar h) and a molecular weight cut-off of 100 kDa similar to commercial membranes. Contact angle and composition determination by XPS measurements revealed the hydrophilic character of the membranes, which improved with increasing additive concentration. Rheological, dynamic light scattering, transmission, and cloud point experiments elucidated the molecular interaction, precipitation, and spinning behavior of the solutions. The low-molecular weight additive reduces the solution viscosity and thus the average relaxation time. On the contrary, slow processes appear with increasing additive concentration in the scattering data. Furthermore, phase separation occurred at a lower non-solvent concentration and the precipitation time increased with increasing additive content. These effects revealed a coupling mechanism of the triblock copolymer with poly(N-vinyl pyrrolidone) in solution. The chosen process parameters as well as the additive solutions provide an easy and inexpensive way to create an antifouling protection layer in situ with established recipes of poly(ether sulfone) hollow fiber membranes. Therefore, the membranes are promising candidates for fast integration in the membrane industry.


Sign in / Sign up

Export Citation Format

Share Document