scholarly journals Composites of Vegetable Oil-Based Polymers and Carbon Nanomaterials

Macromol ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 276-292
Author(s):  
Ana M. Díez-Pascual ◽  
Abbas Rahdar

Owed to current environmental concerns and crude oil price fluctuations, the design of feasible substitutes to petroleum-based polymeric materials is a major challenge. A lot of effort has been focused on transforming natural vegetable oils (VOs), which are inexpensive, abundant, and sustainable, into polymeric materials. Different nanofillers have been combined with these bio-based polymer matrices to improve their thermal, mechanical, and antibacterial properties. The development of multifunctional nanocomposites materials facilitates their application in novel areas such as sensors, medical devices, coatings, paints, adhesives, food packaging, and other industrial appliances. In this work, a brief description of current literature on polymeric nanocomposites from vegetable oils reinforced with carbon nanomaterials is provided, in terms of preparation, and properties. Different strategies to improve the nanomaterial state of dispersion within the biopolymer matrix are discussed, and a correlation between structure and properties is given. In particular, the mechanical, thermal, and electrical properties of these natural polymers can be considerably enhanced through the addition of small quantities of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene (G), or its derivatives such as graphene oxide (GO) or fullerenes (C60). Finally, some current and potential future applications of these materials in diverse fields are briefly discussed.

Biomimetics ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 43
Author(s):  
Athanasios Kotrotsos ◽  
Prokopis Yiallouros ◽  
Vassilis Kostopoulos

The solution electrospinning process (SEP) is a cost-effective technique in which a wide range of polymeric materials can be electrospun. Electrospun materials can also be easily modified during the solution preparation process (prior SEP). Based on this, the aim of the current work is the fabrication and nanomodification of scaffolds using SEP, and the investigation of their porosity and physical and mechanical properties. In this study, polylactic acid (PLA) was selected for scaffold fabrication, and further modified with multi-walled carbon nanotubes (MWCNTs) and hydroxyapatite (HAP) nanoparticles. After fabrication, porosity calculation and physical and mechanical characterization for all scaffold types were conducted. More precisely, the morphology of the fibers (in terms of fiber diameter), the surface properties (in terms of contact angle) and the mechanical properties under the tensile mode of the fabricated scaffolds have been investigated and further compared against pristine PLA scaffolds (without nanofillers). Finally, the scaffold with the optimal properties was proposed as the candidate material for potential future cell culturing.


2018 ◽  
Vol 52 (24) ◽  
pp. 3325-3340 ◽  
Author(s):  
Doo-Yeol Yoo ◽  
Ilhwan You ◽  
Hyunchul Youn ◽  
Seung-Jung Lee

This study investigates the effect of nanomaterials on the piezoresistive sensing capacity of cement-based composites. Three different nanomaterials—multi-walled carbon nanotubes, graphite nanofibers, and graphene oxide—were considered along with a plain mortar, and a cyclic compressive test was performed. Based on a preliminary test, the optimum flowability was determined to be 150 mm in terms of fiber dispersion. The electrical resistivity of the composites substantially decreased by incorporating 1 wt% multi-walled carbon nanotubes, but only slightly decreased by including 1 wt% graphite nanofibers and graphene oxide. This indicates that the use of multi-walled carbon nanotubes is most effective in improving the conductivity of the composites compared to the use of graphite nanofibers and graphene oxide. The fractional change in resistivity of the composites with nanomaterials exhibited similar behavior to that of the cyclic compressive load, but partial reversibility in fractional change in resistivity was obtained beyond 60% of the peak load. A linear relationship between the fractional change in resistivity and cyclic compression strain (up to 1500 με) was observed in the composites with multi-walled carbon nanotubes, and the gauge factor was found to be 166.6. It is concluded that cement-based composites with 1 wt% multi-walled carbon nanotubes can be used as piezoresistive sensors for monitoring the stress/strain generated in concrete structures.


Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 19
Author(s):  
Buasiri ◽  
Habermehl-Cwirzen ◽  
Krzeminski ◽  
Cwirzen

A cement-based matrix incorporating conductive materials such as carbon nanotubes and carbon nanofibers can have self-sensing capability. Both nanomaterials are characterized by excellent physical, mechanical and electrical properties. A disadvantage is that due to their hydrophobic nature it is very difficult to ensure uniform dispersion throughout the cementitious matrix. To overcome this problem a new nanomodified cement containing in-situ attached CNFs was developed leading to a very homogenous and conductive binder matrix. This study aimed to compare the piezoresistive responses of two types of matrixes, one based on the nanomodified cement and the second containing multi-walled carbon nanotubes. Several mortars were prepared containing either MWCNTs or the nanomodified cement, which partially replaced the untreated cement. The effective amount of the carbon nanomaterials was the same for both types of mixes and ranged from 0 wt.% to 0.271 wt.%, calculated by the all binder weight. Changes in the electrical properties were determined while applying compressive load. The results showed that the binders based on the nanomodified cement have significantly better load sensing capabilities and are suitable for applications in monitoring systems.


2015 ◽  
Vol 3 (33) ◽  
pp. 17064-17073 ◽  
Author(s):  
Yongqian Shi ◽  
Ze Long ◽  
Bin Yu ◽  
Keqing Zhou ◽  
Zhou Gui ◽  
...  

Significant improvements in thermal and flame retardant properties of polymeric materials at low loadings hold tremendous promise for fire safety materials.


2021 ◽  
Vol 340 ◽  
pp. 01047
Author(s):  
Nikita I. Lapekin ◽  
Artem A. Shestakov ◽  
Andrey E. Brester ◽  
Arina V. Ukhina ◽  
Alexander G. Bannov

In this paper, the electrical properties of various compacted carbon nanomaterials were investigated. Compacted carbon nanomaterials (carbon nanofibers, multi-walled carbon nanotubes) were compacted into cylindrical samples and the electrical properties were measured in a frequency range from 50 Hz to 1MHz.


2012 ◽  
Vol 1 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Xiaoyong Zhang ◽  
Wenbing Hu ◽  
Jing Li ◽  
Lei Tao ◽  
Yen Wei

Abstract Investigations of the interactions between carbon nanomaterials (CNMs) and living organisms and their subsequent biological responses are of fundamental significance for toxicity assessment and further biomedical applications. In this work, the cellular uptake and cytotoxicity of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and nanodiamond (ND) were examined and compared. We demonstrated that all of the CNMs were readily internalized by HeLa cells through nonspecific cellular uptake. Their cell uptake ratios showed significant differences in the following order: ND > MWCNTs > GO. A series of biological assays were used to evaluate the cytotoxicity of CNMs. It was found that CNMs showed dose- and time-dependent cytotoxicity to HeLa cells. However, cytotoxicity of CNMs was not associated with their cell uptake ratios. Among them, ND exhibited the highest cell uptake ratio and the least cytotoxicity. To the best of our knowledge, this is the first study which has quantitatively determined and compared the cell uptake ratios and cytotoxicities of MWCNTs, GO and ND. And we expect that these results described here could provide useful information for the development of new strategies to design efficient drug delivery nanocarriers and therapeutic systems as well as deep insights into the mechanism of CNMs' cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document