scholarly journals An Improved Modification of Accelerated Double Direction and Double Step-Size Optimization Schemes

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 259
Author(s):  
Milena J. Petrović ◽  
Dragana Valjarević ◽  
Dejan Ilić ◽  
Aleksandar Valjarević ◽  
Julija Mladenović

We propose an improved variant of the accelerated gradient optimization models for solving unconstrained minimization problems. Merging the positive features of either double direction, as well as double step size accelerated gradient models, we define an iterative method of a simpler form which is generally more effective. Performed convergence analysis shows that the defined iterative method is at least linearly convergent for uniformly convex and strictly convex functions. Numerical test results confirm the efficiency of the developed model regarding the CPU time, the number of iterations and the number of function evaluations metrics.

Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 655-665 ◽  
Author(s):  
Milena Petrovic

A hybrid accelerated model with two step length parameters for solving unconstrained optimization problems is presented. Applied hybridization process involves an efficient three term hybrid method. The accelerated double step size model is taken as guiding operator in this hybridization process. Defined method is convergent on the set of uniformly convex functions as well as on the set on strictly convex quadratics. We display a Dolan Mor? performance profiles of derived iteration and of some other comparative hybrid and accelerated methods regarding the number of iterations and the number of function evaluations metrics. Displayed numerical test results confirm that derived model keeps a good properties of its forerunner method and outperform other comparative hybrid accelerated schemes.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Predrag S. Stanimirović ◽  
Gradimir V. Milovanović ◽  
Milena J. Petrović ◽  
Nataša Z. Kontrec

A reduction of the originally double step size iteration into the single step length scheme is derived under the proposed condition that relates two step lengths in the accelerated double step size gradient descent scheme. The proposed transformation is numerically tested. Obtained results confirm the substantial progress in comparison with the single step size accelerated gradient descent method defined in a classical way regarding all analyzed characteristics: number of iterations, CPU time, and number of function evaluations. Linear convergence of derived method has been proved.


2020 ◽  
Vol 10 (4) ◽  
pp. 339-348
Author(s):  
Mahmoud Saleh ◽  
Ádám Nagy ◽  
Endre Kovács

This paper is the second part of a paper-series in which we create and examine new numerical methods for solving the heat conduction equation. Now we present numerical test results of the new algorithms which have been constructed using the known, but non-conventional UPFD and odd-even hopscotch methods in Part 1. Here all studied systems have one space dimension and the physical properties of the heat conducting media are uniform. We also examine different possibilities of treating heat sources.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yanjun Wang ◽  
Shisen Liu

<p style='text-indent:20px;'>This paper is concerned with the joint chance constraint for a system of linear inequalities. We discuss computationally tractble relaxations of this constraint based on various probability inequalities, including Chebyshev inequality, Petrov exponential inequalities, and others. Under the linear decision rule and additional assumptions about first and second order moments of the random vector, we establish several upper bounds for a single chance constraint. This approach is then extended to handle the joint linear constraint. It is shown that the relaxed constraints are second-order cone representable. Numerical test results are presented and the problem of how to choose proper probability inequalities is discussed.</p>


2018 ◽  
Vol 231 ◽  
pp. 01004
Author(s):  
Marcin Budzyński ◽  
Dawid Bruski

Horizontal curves, an element of road infrastructure, have a statistically high number of accidents. Considering that horizontal curves in the last ten years have had app. 10% of all road accidents representing app. 14% of all fatalities on Polish roads, the issue is serious and requires more research and proper road safety treatments. Data for 2007 - 2016 show that in the case of accidents on horizontal curves app. 45% of the fatalities happened as a result of crashing into roadside obstacles such as signs and first of all trees. This shows that horizontal curves require road safety equipment, and specifically, safety barriers. Key to this is using the right equipment and the right parameters. To achieve that, full-scale crash tests should be conducted to be followed by numerical tests. The article will present a synthesis of the available research conducted in Poland and abroad. An assessment will be made of four crash tests of TB32 with barriers that have a steel and cable guardrail. They are the outcome of the RID 3A “Road safety equipment” project called RoSE. Building on these tests, numerical test results will be presented.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 805-814 ◽  
Author(s):  
Woon Hyun Cho ◽  
Terry W. Spencer

A new algorithm is developed for estimating the moveout velocities and polarization states in mixed wavefields recorded on multicomponent array data in the presence of random noise. The algorithm is applicable to a spatial and temporal data window in which more than two events are present. Three fundamental attributes of the waves are determined: polarization angle, apparent slowness, and the change in amplitude between adjacent detectors. In implementing the method, it is assumed that data is recorded at equispaced geophones located in a spatial window in which the three parameters are constant. Robustness is achieved by averaging the transfer matrix over all combinations of the subarrays that have the same transfer matrix. Application of a least‐squares criterion reduces the mathematics to an eigenvalue problem. The eigenvalues are complex, and their magnitude determines the amplitude change factor. The phase is a linear function of frequency with slope that determines the vertical slowness. The eigenvectors are the polarizations. The input data consists of the cross‐power spectra between subarrays that contain the same number of elements and are shifted by zero or one geophone separation. Examples illustrate the application of the algorithm to synthetic data. Numerical test results show that the performance of the method is not sensitive either to the time overlap between events or to the degree of similarity between waveforms.


1979 ◽  
Vol 57 (18) ◽  
pp. 2458-2463 ◽  
Author(s):  
Andrew W. Yau ◽  
Huw O. Pritchard

A numerical test of the reliability of the Slater–Forst procedure for the inversion of the Arrhenius rate law is presented using the theoretical data for the reactions N2O → N2 + O and CO2 → CO + O reported previously: the test results are positive. The sensitivity of the procedure to variations in the Arrhenius parameters is also examined.


2011 ◽  
Vol 10 (4) ◽  
pp. 844-866 ◽  
Author(s):  
Jingyan Yue ◽  
Guangwei Yuan

AbstractFor a new nonlinear iterative method named as Picard-Newton (P-N) iterative method for the solution of the time-dependent reaction-diffusion systems, which arise in non-equilibrium radiation diffusion applications, two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented. The non-equilibrium radiation diffusion problems with flux limiter are considered, which appends pesky complexity and nonlinearity to the diffusion coefficient. Numerical results are presented to demonstrate that compared with Picard method, for a desired accuracy, significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.


2020 ◽  
Vol 12 (3) ◽  
pp. 586 ◽  
Author(s):  
Bihter Erol ◽  
Mustafa Serkan Işık ◽  
Serdar Erol

The launch of dedicated satellite missions at the beginning of the 2000s led to significant improvement in the determination of Earth gravity field models. As a consequence of this progress, both the accuracies and the spatial resolutions of the global geopotential models increased. However, the spectral behaviors and the accuracies of the released models vary mainly depending on their computation strategies. These strategies are briefly explained in this article. Comprehensive quality assessment of the gravity field models by means of spectral and statistical analyses provides a comparison of the gravity field mapping accuracies of these models, as well as providing an understanding of their progress. The practical benefit of these assessments by means of choosing an optimal model with the highest accuracy and best resolution for a specific application is obvious for a broad range of geoscience applications, including geodesy and geophysics, that employ Earth gravity field parameters in their studies. From this perspective, this study aims to evaluate the GOCE High-Level Processing Facility geopotential models including recently published sixth releases using different validation methods recommended in the literature, and investigate their performances comparatively and in addition to some other models, such as GOCO05S, GOGRA04S and EGM2008. In addition to the validation statistics from various countries, the study specifically emphasizes the numerical test results in Turkey. It is concluded that the performance improves from the first generation RL01 models toward the final RL05 models, which were based on the entire mission data. This outcome was confirmed when the releases of different computation approaches were considered. The accuracies of the RL05 models were found to be similar to GOCO05S, GOGRA04S and even to RL06 versions but better than EGM2008, in their maximum expansion degrees. Regarding the results obtained from these tests using the GPS/leveling observations in Turkey, the contribution of the GOCE data to the models was significant, especially between the expansion degrees of 100 and 250. In the study, the tested geopotential models were also considered for detailed geoid modeling using the remove-compute-restore method. It was found that the best-fitting geopotential model with its optimal expansion degree (please see the definition of optimal degree in the article) improved the high-frequency regional geoid model accuracy by almost 15%.


2018 ◽  
Vol 22 (7) ◽  
pp. 1566-1578 ◽  
Author(s):  
Wen-ming Zhang ◽  
Tao Li ◽  
Lu-yao Shi ◽  
Zhao Liu ◽  
Kai-rui Qian

Construction of suspension bridges and their structural analysis are challenged by the presence of elements (chains or main cables) capable of large deflections leading to a geometric nonlinearity. For an accurate prediction of the main cable geometry of a suspension bridge, an innovative iterative method is proposed in this article. In the iteration process, hanger tensions and the cable shape are, in turns, used as inputs. The cable shape is analytically predicted with an account of the pylon saddle arc effect, while finite element method is employed to calculate hanger tensions with an account of the combined effects of the cable-hanger-stiffening girder. The cable static equilibrium state is expressed by three coupled nonlinear governing equations, which are solved by their transformation into a form corresponding to the unconstrained optimization problem. The numerical test results for the hanger tensions in an existing suspension bridge were obtained by the proposed iterative method and two conventional ones, namely, the weight distribution and continuous multiple-rigid-support beam methods. The latter two reference methods produced the respective deviations of 10% and 5% for the side hangers, respectively, which resulted in significant errors in the elevations of the suspension points. To obtain more accurate hanger tensile forces, especially for the side hangers, as well as the cable shape, the iterative method proposed in this article is recommended.


Sign in / Sign up

Export Citation Format

Share Document