scholarly journals On the (p,q)–Chebyshev Polynomials and Related Polynomials

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 136 ◽  
Author(s):  
Can Kızılateş ◽  
Naim Tuğlu ◽  
Bayram Çekim

In this paper, we introduce ( p , q ) –Chebyshev polynomials of the first and second kind that reduces the ( p , q ) –Fibonacci and the ( p , q ) –Lucas polynomials. These polynomials have explicit forms and generating functions are given. Then, derivative properties between these first and second kind polynomials, determinant representations, multilateral and multilinear generating functions are derived.

1981 ◽  
Vol 90 (3) ◽  
pp. 385-387 ◽  
Author(s):  
B. G. S. Doman ◽  
J. K. Williams

The Fibonacci and Lucas polynomials Fn(z) and Ln(z) are denned. These reduce to the familiar Fibonacci and Lucas numbers when z = 1. The polynomials are shown to satisfy a second order linear difference equation. Generating functions are derived, and also various simple identities, and relations with hypergeometric functions, Gegenbauer and Chebyshev polynomials.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 746
Author(s):  
Primo Brandi ◽  
Paolo Emilio Ricci

Starting from a representation formula for 2 × 2 non-singular complex matrices in terms of 2nd kind Chebyshev polynomials, a link is observed between the 1st kind Chebyshev polinomials and traces of matrix powers. Then, the standard composition of matrix powers is used in order to derive composition identities of 2nd and 1st kind Chebyshev polynomials. Before concluding the paper, the possibility to extend this procedure to the multivariate Chebyshev and Lucas polynomials is touched on.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
GwangYeon Lee ◽  
Mustafa Asci

Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called(p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving(p,q)-Fibonacci polynomials.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 354 ◽  
Author(s):  
Tomasz Czyżycki ◽  
Jiří Hrivnák ◽  
Jiří Patera

The generating functions of fourteen families of generalized Chebyshev polynomials related to rank two Lie algebras A 2 , C 2 and G 2 are explicitly developed. There exist two classes of the orthogonal polynomials corresponding to the symmetric and antisymmetric orbit functions of each rank two algebra. The Lie algebras G 2 and C 2 admit two additional polynomial collections arising from their hybrid character functions. The admissible shift of the weight lattice permits the construction of a further four shifted polynomial classes of C 2 and directly generalizes formation of the classical univariate Chebyshev polynomials of the third and fourth kinds. Explicit evaluating formulas for each polynomial family are derived and linked to the incomplete exponential Bell polynomials.


2012 ◽  
Vol 49 (02) ◽  
pp. 303-318 ◽  
Author(s):  
L. B. Klebanov ◽  
A. V. Kakosyan ◽  
S. T. Rachev ◽  
G. Temnov

We study a family of distributions that satisfy the stability-under-addition property, provided that the number ν of random variables in a sum is also a random variable. We call the corresponding property ν-stability and investigate the situation when the semigroup generated by the generating function of ν is commutative. Using results from the theory of iterations of analytic functions, we describe ν-stable distributions generated by summations with rational generating functions. A new case in this class of distributions arises when generating functions are linked with Chebyshev polynomials. The analogue of normal distribution corresponds to the hyperbolic secant distribution.


2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Nabiha Saba ◽  
◽  
Ali Boussayoud ◽  
Abdelhamid Abderrezzak ◽  
◽  
...  

In this paper, we will firstly define a new generalization of numbers (p, q) and then derive the appropriate Binet's formula and generating functions concerning (p,q)-Fibonacci numbers, (p,q)- Lucas numbers, (p,q)-Pell numbers, (p,q)-Pell Lucas numbers, (p,q)-Jacobsthal numbers and (p,q)-Jacobsthal Lucas numbers. Also, some useful generating functions are provided for the products of (p,q)-numbers with bivariate complex Fibonacci and Lucas polynomials.


Filomat ◽  
2016 ◽  
Vol 30 (4) ◽  
pp. 969-975 ◽  
Author(s):  
Gulsah Ozdemir ◽  
Yilmaz Simsek

The purpose of this paper is to construct generating functions for the family of the Fibonacci and Jacobsthal polynomials. Using these generating functions and their functional equations, we investigate some properties of these polynomials. We also give relationships between the Fibonacci, Jacobsthal, Chebyshev polynomials and the other well known polynomials. Finally, we give some infinite series applications related to these polynomials and their generating functions.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 276 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Lee-Chae Jang ◽  
Gwan-Woo Jang

In this paper, we derive Fourier series expansions for functions related to sums of finite products of Chebyshev polynomials of the first kind and of Lucas polynomials. From the Fourier series expansions, we are able to express those two kinds of sums of finite products of polynomials as linear combinations of Bernoulli polynomials.


Sign in / Sign up

Export Citation Format

Share Document