scholarly journals Optimum Design of Infinite Perforated Orthotropic and Isotropic Plates

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 569
Author(s):  
Mohammad Jafari ◽  
Seyed Ahmad Mahmodzade Hoseyni ◽  
Holm Altenbach ◽  
Eduard-Marius Craciun

In this study, an attempt was made to introduce the optimal values of effective parameters on the stress distribution around a circular/elliptical/quasi-square cutout in the perforated orthotropic plate under in-plane loadings. To achieve this goal, Lekhnitskii’s complex variable approach and Particle Swarm Optimization (PSO) method were used. This analytical method is based on using the complex variable method in the analysis of two-dimensional problems. The Tsai–Hill criterion and Stress Concentration Factor (SCF) are taken as objective functions and the fiber angle, bluntness, aspect ratio of cutout, the rotation angle of cutout, load angle, and material properties are considered as design variables. The results show that the PSO algorithm is able to predict the optimal value of each effective parameter. In addition, these parameters have significant effects on stress distribution around the cutouts and the load-bearing capacity of structures can be increased by appropriate selection of the effective design variables. The main innovation of this study is the use of PSO algorithm to determine the optimal design variables to increase the strength of the perforated plates. Finite element method (FEM) was employed to examine the results of the present analytical solution. The results obtained by the present solution are in accordance with numerical results.


2016 ◽  
Vol 36 (5) ◽  
pp. 360-376 ◽  
Author(s):  
M Jafari ◽  
SA Mahmodzade Hoseyni

The effect of geometric discontinuities can be reduced by appropriate choice of parameters affecting the stress distribution around cutout. This is possible if the effective parameters are accurately calculated. In this study, using genetic algorithm, the optimum parameters are introduced in order to achieve the minimum value of stress around cutout. Here, design variables are fiber angle, load angle, aspect ratio of cutout, shape of cutout, rotation angle of cutout, and bluntness parameters. Using the Lekhnitskii’s method, stress distribution around various cutouts is determined. The effect of the aforementioned parameters on the stress values around various shapes of cutouts such as quasi-triangular, quasi-square, and hypotrochoid cutouts is examined. Also, the optimal parameters for each cutout are introduced. The results showed that these parameters have significant effects on stress distribution around the cutouts and the structural load-bearing capacity will increase without changing the type of material if the parameters are correctly chosen.



2021 ◽  
Vol 11 (14) ◽  
pp. 6517
Author(s):  
Marta Varo-Martínez ◽  
Luis Manuel Fernández-Ahumada ◽  
Rafael López-Luque ◽  
José Ramírez-Faz

PV self-consumption can contribute positively to the spread of PV and, therefore, to the progress of renewable energies as a key element in a decarbonized energy model. However, the policies of each country regarding the promotion of this type of renewable technology is fundamental for their growth. Despite the high number of sunshine hours registered in Spain, self-consumption in this country has not been authorized until recently. In this new context, this work presents a systematic study of the profitability limits of a self-consumption PV installation under different conditions of installed peak power, orientation and inclination of the PV panels and level of obstruction of the installation. It was proved that, for the case of study (Córdoba, Spain), the maximum profitability was achieved for PV panels oriented to the south and with an inclination of 15° whereas the most unfavourable conditions are those of PV panels with an orientation and inclination of 180° and 90°, respectively. Furthermore, when the level of obstruction increases the maximum of the Net Present Value of self-consumptions PV installations decreases and this optimal value is achieved for installations with lower power. Finally, empirical adjustment equations have been developed to estimate the profitability parameters of self-consumptions PV installations as a function of their design variables.



1943 ◽  
Vol 10 (2) ◽  
pp. A69-A75
Author(s):  
Martin Goland

Abstract The purpose of this paper is to investigate the influence of several types of inclusions on the stress distribution in elastic plates under transverse flexure. An “inclusion” is defined as a close-fitting plate of some second material cemented into a hole cut in the interior of the elastic plate. Depending upon the properties of the material of which it is composed, the inclusion is described as rigid or elastic. In particular, the solutions presented will deal with the effects of circular inclusions of differing degrees of elasticity and rigid inclusions of varying elliptical form. Since the rigid inclusion and the hole are limiting types of elastic inclusions, and the circular shape is a special form of the ellipse, plates with either a circular hole or a circular rigid inclusion are important special cases of this discussion. It is hoped that the present analysis of several types of inclusions will aid in a future study of perforated plates stiffened by means of reinforcing rings fitted into the holes.



1954 ◽  
Vol 21 (3) ◽  
pp. 263-270
Author(s):  
S. Woinowsky-Krieger

Abstract A solution is given in this paper for the problem of bending of an infinite flat slab loaded uniformly and rigidly clamped in square-shaped columns arranged to form the square panels of the slab. The complex variable method in connection with conformal mapping is used for this aim. Although not perfectly rigorous, the solution obtained is sufficiently accurate for practical purposes and, besides, it can be improved at will. Stress diagrams traced in a particular case of column dimensions do not wholly confirm the stress distribution, generally accepted in design of flat slabs.



1957 ◽  
Vol 24 (1) ◽  
pp. 122-124
Author(s):  
Gunadhar Paria

Abstract The problem of finding the stress distribution in a two-dimensional elastic body with parabolic boundary, subject to mixed boundary conditions, has been reduced to the solution of the nonhomogeneous Hilbert problem following the method of complex variable. The result has been compared with that for a straight boundary.



1958 ◽  
Vol 25 (4) ◽  
pp. 571-574
Author(s):  
Masaichiro Seika

Abstract This paper contains a solution for the stress distribution in a thick cylinder having a square hole with rounded corners under the condition of concentrated loading. The problem is investigated by the complex-variable method, associated with the name of N. I. Muskhelishvili. The unknown coefficients included in the solution are determined by the method of perturbation. Numerical examples of the solution are worked out and compared with the results available.



Author(s):  
Li Wang ◽  
Boris Diskin ◽  
Leonard V. Lopes ◽  
Eric J. Nielsen ◽  
Elizabeth Lee-Rausch ◽  
...  

A high-fidelity multidisciplinary analysis and gradient-based optimization tool for rotorcraft aero-acoustics is presented. Tightly coupled discipline models include physics-based computational fluid dynamics, rotorcraft comprehensive analysis, and noise prediction and propagation. A discretely consistent adjoint methodology accounts for sensitivities of unsteady flows and unstructured, dynamically deforming, overset grids. The sensitivities of structural responses to blade aerodynamic loads are computed using a complex-variable approach. Sensitivities of acoustic metrics are computed by chain-rule differentiation. Interfaces are developed for interactions between the discipline models for rotorcraft aeroacoustic analysis and the integrated sensitivity analysis. The multidisciplinary sensitivity analysis is verified through a complex-variable approach. To verify functionality of the multidisciplinary analysis and optimization tool, an optimization problem for a 40% Mach-scaled HART-II rotor-and-fuselage configuration is crafted with the objective of reducing thickness noise subject to aerodynamic and geometric constraints. The optimized configuration achieves a noticeable noise reduction, satisfies all required constraints, and produces thinner blades as expected. Computational cost of the optimization cycle is assessed in a high-performance computing environment and found to be acceptable for design of rotorcraft in general level-flight conditions.



2016 ◽  
Vol 7 (2) ◽  
pp. 15-35
Author(s):  
Arindam Majumder ◽  
Abhishek Majumder

Nowadays, optimization of process parameters in manufacturing process deals with a number of objectives. However, the optimization of such process becomes more complex if selected attributes are conflicting in nature. Therefore, to overcome this problem in this study a SDM based PSO algorithm is proposed for optimizing the manufacturing process having multi attribute. In this proposed approach the SDM is used to convert multi attributes into single attribute, named as multi performance index, while the optimal value of this multi performance index is predicted by PSO. Finally, three instances related to optimization of advanced manufacturing process parameters are solved by the proposed approach and are compared with the results of the other established optimization techniques such as Desirability based RSM, SDM-GA and SDM-CACO. From the comparison it has been revealed that the proposed approach performs better as compare to the existing approaches.



Sign in / Sign up

Export Citation Format

Share Document