scholarly journals Mathematical Analysis of Maxwell Fluid Flow through a Porous Plate Channel Induced by a Constantly Accelerating or Oscillating Wall

Mathematics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 90
Author(s):  
Constantin Fetecau ◽  
Rahmat Ellahi ◽  
Sadiq M. Sait

Exact expressions for dimensionless velocity and shear stress fields corresponding to two unsteady motions of incompressible upper-convected Maxwell (UCM) fluids through a plate channel are analytically established. The porous effects are taken into consideration. The fluid motion is generated by one of the plates which is moving in its plane and the obtained solutions satisfy all imposed initial and boundary conditions. The starting solutions corresponding to the oscillatory motion are presented as sum of their steady-state and transient components. They can be useful for those who want to eliminate the transients from their experiments. For a check of the obtained results, their steady-state components are presented in different forms whose equivalence is graphically illustrated. Analytical solutions for the incompressible Newtonian fluids performing the same motions are recovered as limiting cases of the presented results. The influence of physical parameters on the fluid motion is graphically shown and discussed. It is found that the Maxwell fluids flow slower as compared to Newtonian fluids. The required time to reach the steady-state is also presented. It is found that the presence of porous medium delays the appearance of the steady-state.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Ahmed Zeeshan

Two unsteady motions of incompressible Maxwell fluids between infinite horizontal parallel plates embedded in a porous medium are analytically studied to get exact solutions using the finite Fourier cosine transform. The motion is induced by the lower plate that applies time-dependent shear stresses to the fluid. The solutions that have been obtained satisfy all imposed initial and boundary conditions. They can be easily reduced as limiting cases to known solutions for the incompressible Newtonian fluids. For a check of their correctness, the steady-state solutions are presented in different forms whose equivalence is graphically proved. The effects of physical parameters on the fluid motion are graphically emphasized and discussed. Required time to reach the steady-state is also determined. It is found that the steady-state is rather obtained for Newtonian fluids as compared with Maxwell fluids. Furthermore, the effect of the side walls on the fluid motion is more effective in the case of Newtonian fluids.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 334
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Tehseen Abbas ◽  
Rahmat Ellahi

Some unsteady motions of incompressible upper-convected Maxwell (UCM) fluids with exponential dependence of viscosity on the pressure are analytically studied. The fluid motion between two infinite horizontal parallel plates is generated by the lower plate, which applies time-dependent shear stresses to the fluid. Exact expressions, in terms of standard Bessel functions, are established both for the dimensionless velocity fields and the corresponding non-trivial shear stresses using the Laplace transform technique and suitable changes of the unknown function and the spatial variable in the transform domain. They represent the first exact solutions for unsteady motions of non-Newtonian fluids with pressure-dependent viscosity. The similar solutions corresponding to the flow of the same fluids due to an exponential shear stress on the boundary as well as the solutions of ordinary UCM fluids performing the same motions are obtained as limiting cases of present results. Furthermore, known solutions for unsteady motions of the incompressible Newtonian fluids with/without pressure-dependent viscosity induced by oscillatory or constant shear stresses on the boundary are also obtained as limiting cases. Finally, the influence of physical parameters on the fluid motion is graphically illustrated and discussed. It is found that fluids with pressure-dependent viscosity flow are slower when compared to ordinary fluids.


2021 ◽  
Vol 66 (1) ◽  
pp. 197-209
Author(s):  
Constantin Fetecau ◽  
Abdul Rauf

Steady motion of two types of incompressible Maxwell fluids with power-law dependence of viscosity on the pressure is analytically studied between infinite horizontal parallel plates when the gravity effects are taken into consideration. Simple and exact expressions are established for the permanent components of starting solutions corresponding to two oscillatory motions induced by the lower plate that oscillates in its plane. Such solutions are very important for the experimentalists who want to eliminate the transients from their experiments. The similar solutions for the simple Couette flow of the same fluids, as well as the permanent solutions corresponding to ordinary incompressible Maxwell fluids performing the same motions, are obtained as limiting cases of general solutions. The convergence of starting solutions to their permanent components as well as the influence of physical parameters on the fluid motion is graphically underlined and discussed.


2018 ◽  
Vol 96 (9) ◽  
pp. 1016-1028 ◽  
Author(s):  
Pramod Kumar Yadav ◽  
Sneha Jaiswal

The present problem is concerned with two-phase fluid flow through a horizontal porous channel in the presence of uniform inclined magnetic field. The micropolar fluid or Eringen fluid and Newtonian viscous fluid are flowing in the upper and lower regions of the horizontal porous channel, respectively. In this paper, the permeability of each region of the horizontal porous channel has been taken to be different. The effects of various physical parameters like angles of inclination of magnetic field, viscosity ratio, micropolarity parameter, etc., on the velocities, micro-rotational velocity of two immiscible fluids in horizontal porous channel, wall-shear stress, and flow rate have been discussed. The result obtained for immiscible micropolar–Newtonian fluids are compared with the results of two immiscible Newtonian fluids. The obtained result may be used in production of oil from oil reservoirs, purification of contaminated ground water, etc.


1996 ◽  
Vol 118 (2) ◽  
pp. 310-316 ◽  
Author(s):  
A. S. Wood ◽  
G. E. Tupholme ◽  
M. I. H. Bhatti ◽  
P. J. Heggs

A comparative study is presented of several models describing steady-state heat flow through an assembly consisting of a primary surface (wall) and attached extended surface (fin). Attention is focused on the validity of four performance indicators. The work shows that the augmentation factor is the only indicator capable of correctly predicting the behavioral trends of the rate of heat flow through the assembly as the influencing physical parameters are varied.


2018 ◽  
Vol 9 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Alireza Rahbari ◽  
Morteza Abbasi ◽  
Iman Rahimipetroudi ◽  
Bengt Sundén ◽  
Davood Domiri Ganji ◽  
...  

Abstract. Analytical and numerical analyses have been performed to study the problem of magneto-hydrodynamic (MHD) flow and heat transfer of an upper-convected Maxwell fluid in a parallel plate channel. The governing equations of continuity, momentum and energy are reduced to two ordinary differential equation forms by introducing a similarity transformation. The Homotopy Analysis Method (HAM), Homotopy Perturbation Method (HPM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve this problem. Also, velocity and temperature fields have been computed and shown graphically for various values of the physical parameters. The objectives of the present work are to investigate the effect of the Deborah numbers (De), Hartman electric number (Ha), Reynolds number (Rew) and Prandtl number (Pr) on the velocity and temperature fields. As an important outcome, it is observed that increasing the Hartman number leads to a reduction in the velocity values while increasing the Deborah number has negligible impact on the velocity increment.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Muhammad Jamil ◽  
Najeeb Alam Khan

Unsteady flow of an incompressible Maxwell fluid with fractional derivative induced by a sudden moved plate has been studied, where the no-slip assumption between the wall and the fluid is no longer valid. The solutions obtained for the velocity field and shear stress, written in terms of Wright generalized hypergeometric functions , by using discrete Laplace transform of the sequential fractional derivatives, satisfy all imposed initial and boundary conditions. The no-slip contributions, that appeared in the general solutions, as expected, tend to zero when slip parameter is . Furthermore, the solutions for ordinary Maxwell and Newtonian fluids, performing the same motion, are obtained as special cases of general solutions. The solutions for fractional and ordinary Maxwell fluid for no-slip condition also obtained as limiting cases, and they are equivalent to the previously known results. Finally, the influence of the material, slip, and the fractional parameters on the fluid motion as well as a comparison among fractional Maxwell, ordinary Maxwell, and Newtonian fluids is also discussed by graphical illustrations.


2011 ◽  
Vol 15 (2) ◽  
pp. 527-536 ◽  
Author(s):  
Raju Changal ◽  
Reddy Ananda ◽  
Kumar Vijaya

The unsteady MHD flow of an incompressible viscous electrically conducting fluid between two horizontal parallel non conducting plates, where the lower one is stretching sheet and the upper one is oscillating porous plate, is studied in the presence of a transverse magnetic field and the effects of Hall current. Fluid motion is caused by the stretching of the lower sheet and a constant suction is applied at the upper plate which is oscillating in its own plane. The stretching velocity of the sheet is assumed to be a linear function of distance along the channel. The expressions relating to the velocity distribution are obtained and effects of different values of various physical parameters are calculated numerically and shown graphically.


2017 ◽  
Vol 5 (7) ◽  
pp. 363-373
Author(s):  
M. Umamaheswar ◽  
Raju ◽  
S.V. K. Varma ◽  
C. Sucharitha

In this paper MHD rotating double diffusive and chemically reactive fluid flow past a vertical porous plate with thermal radiation and heat absorption/generation is studied. The non-dimensional governing equations involved in the present analysis are solved by using finite difference technique. The effects of various physical parameters on velocity, temperature and concentration along with skin friction, the rate of heat transfer in the form of Nusselt number and the rate of mass transfer in the form of Sherwood number are studied through the graphs and tables.


Sign in / Sign up

Export Citation Format

Share Document