scholarly journals Computational Statistics and Machine Learning Techniques for Effective Decision Making on Student’s Employment for Real-Time

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1166
Author(s):  
Deepak Kumar ◽  
Chaman Verma ◽  
Pradeep Kumar Singh ◽  
Maria Simona Raboaca ◽  
Raluca-Andreea Felseghi ◽  
...  

The present study accentuated a hybrid approach to evaluate the impact, association and discrepancies of demographic characteristics on a student’s job placement. The present study extracted several significant academic features that determine the Master of Business Administration (MBA) student placement and confirm the placed gender. This paper recommended a novel futuristic roadmap for students, parents, guardians, institutions, and companies to benefit at a certain level. Out of seven experiments, the first five experiments were conducted with deep statistical computations, and the last two experiments were performed with supervised machine learning approaches. On the one hand, the Support Vector Machine (SVM) outperformed others with the uppermost accuracy of 90% to predict the employment status. On the other hand, the Random Forest (RF) attained a maximum accuracy of 88% to recognize the gender of placed students. Further, several significant features are also recommended to identify the placement of gender and placement status. A statistical t-test at 0.05 significance level proved that the student’s gender did not influence their offered salary during job placement and MBA specializations Marketing and Finance (Mkt&Fin) and Marketing and Human Resource (Mkt&HR) (p > 0.05). Additionally, the result of the t-test also showed that gender did not affect student’s placement test percentage scores (p > 0.05) and degree streams such as Science and Technology (Sci&Tech), Commerce and Management (Comm&Mgmt). Others did not affect the offered salary (p > 0.05). Further, the χ2 test revealed a significant association between a student’s course specialization and student’s placement status (p < 0.05). It also proved that there is no significant association between a student’s degree and placement status (p > 0.05). The current study recommended automatic placement prediction with demographic impact identification for the higher educational universities and institutions that will help human communities (students, teachers, parents, institutions) to prepare for the future accordingly.

2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2021 ◽  
Vol 10 (7) ◽  
pp. 436
Author(s):  
Amerah Alghanim ◽  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Gavin McArdle

Volunteered Geographic Information (VGI) is often collected by non-expert users. This raises concerns about the quality and veracity of such data. There has been much effort to understand and quantify the quality of VGI. Extrinsic measures which compare VGI to authoritative data sources such as National Mapping Agencies are common but the cost and slow update frequency of such data hinder the task. On the other hand, intrinsic measures which compare the data to heuristics or models built from the VGI data are becoming increasingly popular. Supervised machine learning techniques are particularly suitable for intrinsic measures of quality where they can infer and predict the properties of spatial data. In this article we are interested in assessing the quality of semantic information, such as the road type, associated with data in OpenStreetMap (OSM). We have developed a machine learning approach which utilises new intrinsic input features collected from the VGI dataset. Specifically, using our proposed novel approach we obtained an average classification accuracy of 84.12%. This result outperforms existing techniques on the same semantic inference task. The trustworthiness of the data used for developing and training machine learning models is important. To address this issue we have also developed a new measure for this using direct and indirect characteristics of OSM data such as its edit history along with an assessment of the users who contributed the data. An evaluation of the impact of data determined to be trustworthy within the machine learning model shows that the trusted data collected with the new approach improves the prediction accuracy of our machine learning technique. Specifically, our results demonstrate that the classification accuracy of our developed model is 87.75% when applied to a trusted dataset and 57.98% when applied to an untrusted dataset. Consequently, such results can be used to assess the quality of OSM and suggest improvements to the data set.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6713
Author(s):  
Omid Khalaj ◽  
Moslem Ghobadi ◽  
Ehsan Saebnoori ◽  
Alireza Zarezadeh ◽  
Mohammadreza Shishesaz ◽  
...  

Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for different variants of OPH alloy to understand their mechanical properties. Three machine learning techniques were developed using experimental data to simulate different outcomes. The effectivity of the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness was set as the output. The results demonstrated that all three models are suitable for predicting the toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and 651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of these parameters, and this acts as a critical rule in training the data sets.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


Computers ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 157
Author(s):  
Daniel Santos ◽  
José Saias ◽  
Paulo Quaresma ◽  
Vítor Beires Nogueira

Traffic accidents are one of the most important concerns of the world, since they result in numerous casualties, injuries, and fatalities each year, as well as significant economic losses. There are many factors that are responsible for causing road accidents. If these factors can be better understood and predicted, it might be possible to take measures to mitigate the damages and its severity. The purpose of this work is to identify these factors using accident data from 2016 to 2019 from the district of Setúbal, Portugal. This work aims at developing models that can select a set of influential factors that may be used to classify the severity of an accident, supporting an analysis on the accident data. In addition, this study also proposes a predictive model for future road accidents based on past data. Various machine learning approaches are used to create these models. Supervised machine learning methods such as decision trees (DT), random forests (RF), logistic regression (LR), and naive Bayes (NB) are used, as well as unsupervised machine learning techniques including DBSCAN and hierarchical clustering. Results show that a rule-based model using the C5.0 algorithm is capable of accurately detecting the most relevant factors describing a road accident severity. Further, the results of the predictive model suggests the RF model could be a useful tool for forecasting accident hotspots.


Optimization algorithms are widely used for the identification of intrusion. This is attributable to the increasing number of audit data features and the decreasing performance of human-based smart Intrusion Detection Systems (IDS) regarding classification accuracy and training time. In this paper, an improved method for intrusion detection for binary classification was presented and discussed in detail. The proposed method combined the New Teaching-Learning-Based Optimization Algorithm (NTLBO), Support Vector Machine (SVM), Extreme Learning Machine (ELM), and Logistic Regression (LR) (feature selection and weighting) NTLBO algorithm with supervised machine learning techniques for Feature Subset Selection (FSS). The process of selecting the least number of features without any effect on the result accuracy in FSS was considered a multi-objective optimization problem. The NTLBO was proposed in this paper as an FSS mechanism; its algorithm-specific, parameter-less concept (which requires no parameter tuning during an optimization) was explored. The experiments were performed on the prominent intrusion machine-learning datasets (KDDCUP’99 and CICIDS 2017), where significant enhancements were observed with the suggested NTLBO algorithm as compared to the classical Teaching-Learning-Based Optimization algorithm (TLBO), NTLBO presented better results than TLBO and many existing works. The results showed that NTLBO reached 100% accuracy for KDDCUP’99 dataset and 97% for CICIDS dataset


2021 ◽  
Author(s):  
Wael Abdelkader ◽  
Tamara Navarro ◽  
Rick Parrish ◽  
Chris Cotoi ◽  
Federico Germini ◽  
...  

BACKGROUND The rapid growth of the biomedical literature makes identifying strong evidence a time-consuming task. Applying machine learning to the process could be a viable solution that limits effort while maintaining accuracy. OBJECTIVE To summarize the nature and comparative performance of machine learning approaches that have been applied to retrieve high-quality evidence for clinical consideration from the biomedical literature. METHODS We conducted a systematic review of studies that applied machine learning techniques to identify high-quality clinical articles in the biomedical literature. Multiple databases were searched to July 2020. Extracted data focused on the applied machine learning model, steps in the development of the models, and model performance. RESULTS From 3918 retrieved studies, 10 met our inclusion criteria. All followed a supervised machine learning approach and applied, from a limited range of options, a high-quality standard for the training of their model. The results show that machine learning can achieve a sensitivity of 95% while maintaining a high precision of 86%. CONCLUSIONS Applying machine learning to distinguish studies with strong evidence for clinical care has the potential to decrease the workload of manually identifying these. The evidence base is active and evolving. Reported methods were variable across the studies but focused on supervised machine learning approaches. Performance may improve by applying more sophisticated approaches such as active learning, auto-machine learning, and unsupervised machine learning approaches.


2021 ◽  
pp. 1-15
Author(s):  
Savaridassan Pankajashan ◽  
G. Maragatham ◽  
T. Kirthiga Devi

Anomaly-based detection is coupled with recognizing the uncommon, to catch the unusual activity, and to find the strange action behind that activity. Anomaly-based detection has a wide scope of critical applications, from bank application security to regular sciences to medical systems to marketing apps. Anomaly-based detection adopted by various Machine Learning techniques is really a type of system that consists of artificial intelligence. With the ever-expanding volume and new sorts of information, for example, sensor information from an incontestably enormous amount of IoT devices and from network flow data from cloud computing, it is implicitly understood without surprise that there is a developing enthusiasm for having the option to deal with more conclusions automatically by means of AI and ML applications. But with respect to anomaly detection, many applications of the scheme are simply the passion for detection. In this paper, Machine Learning (ML) techniques, namely the SVM, Isolation forest classifiers experimented and with reference to Deep Learning (DL) techniques, the proposed DA-LSTM (Deep Auto-Encoder LSTM) model are adopted for preprocessing of log data and anomaly-based detection to get better performance measures of detection. An enhanced LSTM (long-short-term memory) model, optimizing for the suitable parameter using a genetic algorithm (GA), is utilized to recognize better the anomaly from the log data that is filtered, adopting a Deep Auto-Encoder (DA). The Deep Neural network models are utilized to change over unstructured log information to training ready features, which are reasonable for log classification in detecting anomalies. These models are assessed, utilizing two benchmark datasets, the Openstack logs, and CIDDS-001 intrusion detection OpenStack server dataset. The outcomes acquired show that the DA-LSTM model performs better than other notable ML techniques. We further investigated the performance metrics of the ML and DL models through the well-known indicator measurements, specifically, the F-measure, Accuracy, Recall, and Precision. The exploratory conclusion shows that the Isolation Forest, and Support vector machine classifiers perform roughly 81%and 79%accuracy with respect to the performance metrics measurement on the CIDDS-001 OpenStack server dataset while the proposed DA-LSTM classifier performs around 99.1%of improved accuracy than the familiar ML algorithms. Further, the DA-LSTM outcomes on the OpenStack log data-sets show better anomaly detection compared with other notable machine learning models.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


Sign in / Sign up

Export Citation Format

Share Document