scholarly journals Nonlinear Differential Braking Control for Collision Avoidance During Lane Change

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1699
Author(s):  
Young Seop Son ◽  
Wonhee Kim

In this paper, a nonlinear differential braking control method is developed to avoid collision during lane change under driver torque. The lateral dynamics consist of lateral offset error and yaw error dynamics and can be interpreted as a semi-strict feedback form. In the differential braking control problem under the driver torque, a matching condition does not satisfy, and the system is not in the form of, the strict feedback form. Thus, a general backstepping control method cannot be applied. To overcome this problem, the proposed method is designed via the combination of the sliding mode control and backstepping. Two sliding surfaces are designed for differential braking control. One of the surfaces is designed considering the lateral offset error, and the other sliding surface is designed using the combination of the yaw and yaw rate errors as the virtual input of the lateral offset error dynamics. A brake steer force input is developed to regulate the two sliding surfaces using a backstepping procedure under the driver torque. Integral action and a super twisting algorithm are used in the lateral controller to ensure the robustness of the system. The proposed method, which is designed via the combination of the sliding mode control and backstepping, can improve the lateral control performance using differential braking. The proposed method is validated through simulations.

Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


Author(s):  
Saeed Shojaei ◽  
Ali Rahmani Hanzaki ◽  
Shahram Azadi ◽  
Mohammad Amin Saeedi

In this paper, a new decision-making algorithm for double lane change maneuver of an articulated vehicle in real dynamic circumstances is studied. A novel method for determining the decision conditions is used based on the articulated vehicle kinematics and dynamics. Through this method, several points of the articulated vehicle are considered in various situations when conducting double lane change maneuver, and the critical points are determined. A new realistic dynamic method is used based on a 16-degrees of freedom dynamic model of the articulated vehicle. The sliding mode control method is utilized to increase the method efficiency. Therefore, the least safe time to perform the double lane change maneuver is extracted based on the sliding mode control method as tracking control. A new Articulated Vehicle Least safe time formulation is determined for dynamic circumstances. Based on the results of simulated test, the acceptable time range is also established for conducting the lane change maneuver. The lane change maneuver is generalized to the double lane change maneuver. Decision-making algorithm is introduced based on real traffic situations. The dynamic approach and the decision-making algorithm are verified. Results show the validity of the reflected method meaning that the decision-making algorithm is acceptable.


2014 ◽  
Vol 39 (9) ◽  
pp. 1552-1557 ◽  
Author(s):  
Xi LIU ◽  
Xiu-Xia SUN ◽  
Wen-Han DONG ◽  
Peng-Song YANG

Author(s):  
Sara Gholipour P ◽  
Sara Minagar ◽  
Javad Kazemitabar ◽  
Mobin Alizadeh

Background: A novel type of control strategy is presented for control of chaotic systems particularly a chaotic robot in joint and workspace which is the result of applying fractional calculus to dynamic sliding mode control. Objectives: To guarantee the sliding mode condition, control law is introduced based on the Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Conclusion: Also, all of chaotic robot's qualitative and quantitative characteristics have been investigated. Numerical simulations indicate viability of our control method. Results: Qualitative and quantitative characteristics of the chaotic robot are all proven to be viable thru simulations.


2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


Author(s):  
N. I. Rajapakse ◽  
G. S. Happawana ◽  
Y Hurmuzlu

The current paper presents a robust control method that combines sliding-mode control (SMC) and quantitative feedback theory (QFT) for designing a driver seat of a heavy vehicle to reduce driver fatigue. A mathematical model is considered to analyse tracking control characteristics through computer simulation in order to demonstrate the effectiveness of the proposed control methodology. The SMC is used to track the trajectory of the desired motion behaviour of the seat. However, when the system enters into sliding regime, chattering occurs owing to switching delays as well as vehicle system vibrations. The chattering is eliminated with the introduction QFT inside the boundary layer to ensure smooth tracking. Furthermore, using SMC alone requires higher actuator forces for tracking than using both the control schemes together, and causes various problems in selecting hardware. Problems with noise amplification, resonances, presence of uncertainties, and unmodelled high-frequency dynamics can largely be avoided with the use of QFT over other optimization methods. The main contribution of the present paper is to provide guidance in designing the controller to reduce heavy vehicle seat vibration so that the driver's sensation of comfort maintains a certain level at all times.


Sign in / Sign up

Export Citation Format

Share Document