scholarly journals A Framework for Economically Optimal Operation of Explosive Waste Incineration Process to Reduce NOx Emission Concentration

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2174
Author(s):  
Sunghyun Cho ◽  
Dongwoo Kang ◽  
Joseph Sang-Il Kwon ◽  
Minsu Kim ◽  
Hyungtae Cho ◽  
...  

Explosives, especially those used for military weapons, have a short lifespan and their performance noticeably deteriorates over time. These old explosives need to be disposed of safely. Fluidized bed incinerators (FBIs) are safe for disposal of explosive waste (such as TNT) and produce fewer gas emissions compared to conventional methods, such as the rotary kiln. However, previous studies on this FBI process have only focused on minimizing the amount of NOx emissions without considering the operating and unitality costs (i.e., total cost) associated with the process. It is important to note that, in general, a number of different operating conditions are available to achieve a target NOx emission concentration and, thus, it requires a significant computational requirement to compare the total costs among those candidate operating conditions using a computational fluid dynamics simulation. To this end, a novel framework is proposed to quickly determine the most economically viable FBI process operating condition for a target NOx concentration. First, a surrogate model was developed to replace the high-fidelity model of an FBI process, and utilized to determine a set of possible operating conditions that may lead to a target NOx emission concentration. Second, the candidate operating conditions were fed to the Aspen Plus™ process simulation program to determine the most economically competitive option with respect to its total cost. The developed framework can provide operational guidelines for a clean and economical incineration process of explosive waste.

Author(s):  
Nishant Kothari ◽  
Bhavesh R. Bhalja ◽  
Vivek Pandya ◽  
Pushkar Tripathi ◽  
Soumitri Jena

AbstractThis paper presents a phasor-distance based faulty phase detection and fault classification technique for parallel transmission lines. Detection and classification of faulty phase(s) have been carried out by deriving indices from the change in phasor values of current with a distance of one cycle. The derived indices have zero values during normal operating conditions whereas the index corresponding to the faulty phase exceeds the pre-defined threshold in case of occurrence of a fault. A separate ground detection algorithm has been utilized for the identification of involvement of ground in a faulty situation. The performance of the proposed technique has been evaluated for intra-circuit, inter-circuit and simultaneous faults with wide variations in system and fault conditions. The suggested technique has been evaluated for over 23,000 diversified simulated fault cases as well as 14 recorded real fault events. The performance of the proposed technique remains consistent under Current Transformer (CT) saturation as well as different amount and direction of power flow. Moreover, suitability to different power system network has also been studied. Also, faults having fault current less than pre-fault conditions have been detected accurately. The results obtained suggest that it is able to detect faulty phases as well as classify faults within quarter-cycle from the inception of fault with impeccable accuracy. Besides, as modern digital relays have been already equipped with phasor computation facility, phasor-based technique can be easily incorporated with relative ease. At last, a comparative evaluation suggests its superiority in terms of fault classification accuracy, fault detection time, diversify fault scenarios and computational requirement among other existing techniques.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1681
Author(s):  
Yixiang Yuan ◽  
Qinghua Zeng ◽  
Jun Yao ◽  
Yongjun Zhang ◽  
Mengmeng Zhao ◽  
...  

Aiming at the problem of the narrow combustion stability boundary, a conical swirler was designed and constructed based on the concept of fuel distribution. The blowout performance was studied at specified low operating conditions by a combination of experimental testing and numerical simulations. Research results indicate that the technique of the fuel distribution can enhance the combustion stability and widen the boundary of flameout within the range of testing conditions. The increase of the fuel distribution ratio improves the combustion stability but leads to an increase in NOx emission simultaneously. The simulation results show the increase of the fuel distribution ratio causes contact ratio increase in the area of lower reference velocity and gas temperature increase. The increased contact ratio and temperature contribute to the blowout performance enhancement, which is identical to the analysis result of the Damkohler number. The reported work in this paper has potential application value for the development of an industrial burner and combustor with high stability and low NOx emission, especially when the combustion system is required to be stable and efficient at low working conditions.


2021 ◽  
Author(s):  
Thiago Ebel ◽  
Mark Anderson ◽  
Parth Pandya ◽  
Mat Perchanok ◽  
Nick Tiney ◽  
...  

Abstract When developing a turbocharged internal combustion engine, the choice of turbocharger is usually based on designer experience and existing hardware. However, proper turbocharger design relies on matching the compressor and turbine performance to the engine requirements so that parameters such as boost and back pressure, compressor pressure ratio, and turbine inlet temperatures meet the needs of the engine without exceeding its allowable operating envelope. Therefore, the ultimate measure of a successful turbocharger design is how well it is matched to an engine across various operating conditions. This, in turn, determines whether a new turbocharger is required, or an existing solution can be used. When existing turbocharger solutions are not viable, the engine designer is at a loss on how to define a new turbocharger that meets the desired performance requirements. A common approach in industry has been to scale the performance of an existing turbocharger (compressor and turbine maps) and take these requirements for Original Equipment Manufacturers to possibly match it with a real machine. However, the assumptions made in a basic scaling process are quite simplistic and generally not satisfactory in this situation. A better approach would be to use a validated meanline model for a compressor and turbine instead, allowing to perform an actual preliminary design of such components. Such approach allows to link the engine performance requirements in a very early stage of te component design project and it guides the designer for the design decisions, such as rotor size, variable geometry nozzles, diameter, or shroud trims and others. Therefore, a feasible solution is more likely with design less iterations. This paper describes a methodology for an integrated approach to design and analyze a turbocharged internal combustion engine using commercially available state-of-the-art 1D gas dynamics simulation tool linked to two powerful turbomachinery meanline programs. The outputs of this analysis are detailed performance data of the engine and turbocharger at different engine operating conditions. Two case studies are then presented for a 10-liter diesel truck engine. The first study demonstrates how the programs are used to evaluate an existing engine and reverse engineer an existing turbocharger based only on the available performance maps. Then a second study is done using a similar approach but redesigning a new turbocharger (based on the reverse engineered one) for an increased torque output of the same engine.


Author(s):  
Suneel Nagar ◽  
Ajay Singh ◽  
Deepak Patel

The objective of this study is to provide modern analytical and empirical tools for evaluation of the thermal-flow performance or design of air-cooled heat exchangers (ACHE) and cooling towers. This review consist various factors which effect the performance of ACHE. We introduced systematically to the literature, theory, and practice relevant to the performance evaluation and design of industrial cooling. Its provide better understanding of the performance characteristics of a heat exchanger, effectiveness can be improved in different operating conditions .The total cost of cycle can be reduced by increasing the effectiveness of heat exchanger.


2016 ◽  
Vol 33 (2) ◽  
Author(s):  
Yexiang Xiao ◽  
Wei Zhu ◽  
Zhengwei Wang ◽  
jin zhang ◽  
Chongji Zeng ◽  
...  

Purpose Numerically analyzed the flow characteristic and explored the hydrodynamic mechanism of the S-shaped region formation of a Francis pump-turbine. Design/methodology/approach Three-dimensional steady and unsteady simulations were performed for a number of operating conditions at the optimal guide vanes opening. The steady Reynolds averaged Navier-Stokes equations with the SST turbulence model were solved to model the internal flow within the entire flow passage. The predicted discharge-speed curve agrees well with the model test at generating mode. This paper compared the hydrodynamic characteristics of for off-design cases in S-shaped region with the optimal operating case, and more analysis focuses particularly on very low positive and negative discharge cases with the same unit speed. Findings At runaway case towards smaller discharge, the relative circumferential velocity becomes stronger in the vaneless, which generates the “water ring” and blocks the flow between guide vane and runner. The runner inlet attack angle becomes larger, and the runner blade passages nearly filled with flow separation and vortexes. The deterioration of runner blade flow leads to the dramatic decrease of runner torque, which tends to reduce the runner rotation speed. In this situation, the internal flow can’t maintain the larger rotating speed at very low positive discharge cases, so the unit discharge-speed curves bend to S-shaped near runaway case. Originality/value The analysis method of four off-design cases on S-shaped region with the comparison of optimal operation case and the calculated attack angles are adopted to explore the mechanism of S characteristic. The flow characteristic and quantitative analysis all explain the bending of the unit discharge-speed curves.


Author(s):  
Dawen Huang ◽  
Shanhua Tang ◽  
Dengji Zhou

Abstract Gas turbines, an important energy conversion equipment, produce Nitrogen Oxides (NOx) emissions, endangering human health and forming air pollution. With the increasingly stringent NOx emission standards, it is more significant to ascertain NOx emission characteristics to reduce pollutant emissions. Establishing an emission prediction model is an effective way for real-time and accurate monitoring of the NOx discharge amount. Based on the multi-layer perceptron neural networks, an interpretable emission prediction model with a monitorable middle layer is designed to monitor NOx emission by taking the ambient parameters and boundary parameters as the network inputs. The outlet temperature of the compressor is selected as the monitorable measuring parameters of the middle layer. The emission prediction model is trained by historical operation data under different working conditions. According to the errors between the predicted values and measured values of the middle layer and output layer, the weights of the emission prediction model are optimized by the back-propagation algorithm, and the optimal NOx emission prediction model is established for gas turbines under the various working conditions. Furthermore, the mechanism of predicting NOx emission value is explained based on known parameter influence laws between the input layer, middle layer and output layer, which helps to reveal the main measurement parameters affecting NOx emission value, adjust the model parameters and obtain more accurate prediction results. Compared with the traditional emission monitoring methods, the emission prediction model has higher accuracy and faster calculation efficiency and can obtain believable NOx emission prediction results for various operating conditions of gas turbines.


2020 ◽  
pp. 0734242X2096268
Author(s):  
Kyuyeon Kim ◽  
Suyoung Lee ◽  
Wonseok Yang ◽  
Gyunggoo Choi ◽  
Wonseok Lee ◽  
...  

The Ministry of Environment, Republic of Korea has implemented the “Framework Act on Resource Recirculation” to activate waste resource recovery. However, industrial waste treatment facilities have some problems related to diversity of waste received for proper management of wastes. Waste incineration facilities are required to receive and process combustible waste and are forbidden to re-consign waste to other waste treatment facilities without any processing. In reality, a large quantity of incombustibles is injected into the incinerator because it is impossible to completely separate the incombustible materials. Therefore, it is necessary to develop additional management criteria for optimal operation of the incineration facility. This study was conducted to improve institutional management of incineration facilities in Korea. Through a literature review and statistics study, incombustible waste management trends were investigated. The characteristics of waste entering incineration facilities were surveyed. Physical composition and proximate analysis of incoming waste were conducted, and properties of the incombustibles mixed in feedstock to waste incineration facilities were examined. As a result of this study, incombustibles mainly consisting of the construction and demolition waste, such as soil, glass, and metals should be separated from feed sent to incinerators. A mechanical screening technique that sorts particles of 30–40 mm in size can be used to separate the incombustibles. Also, management criteria could be proposed to sort and re-consign the incombustibles.


Sign in / Sign up

Export Citation Format

Share Document