scholarly journals Cytotoxic, Anti-Migration, and Anti-Invasion Activities on Breast Cancer Cells of Angucycline Glycosides Isolated from a Marine-Derived Streptomyces sp.

Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 277 ◽  
Author(s):  
Xin-Ying Qu ◽  
Jin-Wei Ren ◽  
Ai-Hong Peng ◽  
Shi-Qi Lin ◽  
Dan-Dan Lu ◽  
...  

Four angucycline glycosides were previously characterized from marine-derived Streptomyces sp. OC1610.4. Further investigation of this strain cultured on different fermentation media from that used previously resulted in the isolation of two new angucycline glycosides, vineomycins E and F (1–2), and five known homologues, grincamycin L (3), vineomycinone B2 (4), fridamycin D (5), moromycin B (7), and saquayamycin B1 (8). Vineomycin F (2) contains an unusual ring-cleavage deoxy sugar. All the angucycline glycosides isolated from Streptomyces sp. OC1610.4 were evaluated for their cytotoxic activity against breast cancer cells MCF-7, MDA-MB-231, and BT-474. Moromycin B (7), saquayamycin B1 (8), and saquayamycin B (9) displayed potent anti-proliferation against the tested cell lines, with IC50 values ranging from 0.16 to 0.67 μM. Saquayamycin B (9) inhibited the migration and invasion of MDA-MB-231 cells in a dose-dependent manner, as detected by Transwell and wound-healing assays.

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4293
Author(s):  
Xiaowen Liu ◽  
Manuel A. Riquelme ◽  
Yi Tian ◽  
Dezhi Zhao ◽  
Francisca M. Acosta ◽  
...  

ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.


2013 ◽  
Vol 35 ◽  
pp. 933-938 ◽  
Author(s):  
Farnaz Barneh ◽  
Mona Moshayedi ◽  
Hamid Mirmohammadsadeghi ◽  
Shaghayegh Haghjooy-Javanmard ◽  
Ali Mohammad Sabzghabaee ◽  
...  

Background. EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc.Methods. Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence.Results. Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel.Conclusion. This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation.


2019 ◽  
Vol 8 (11) ◽  
pp. 1539-1552 ◽  
Author(s):  
Juan Carlos Juárez-Cruz ◽  
Miriam Daniela Zuñiga-Eulogio ◽  
Monserrat Olea-Flores ◽  
Eduardo Castañeda-Saucedo ◽  
Miguel Ángel Mendoza-Catalán ◽  
...  

Breast cancer is the most common invasive neoplasia, and the second leading cause of the cancer deaths in women worldwide. Mammary tumorigenesis is severely linked to obesity, one potential connection is leptin. Leptin is a hormone secreted by adipocytes, which contributes to the progression of breast cancer. Cell migration, metalloproteases secretion, and invasion are cellular processes associated with various stages of metastasis. These processes are regulated by the kinases FAK and Src. In this study, we utilized the breast cancer cell lines MCF7 and MDA-MB-231 to determine the effect of leptin on FAK and Src kinases activation, cell migration, metalloprotease secretion, and invasion. We found that leptin activates FAK and Src and induces the localization of FAK to the focal adhesions. Interestingly, leptin promotes the activation of FAK through a Src- and STAT3-dependent canonical pathway. Specific inhibitors of FAK, Src and STAT3 showed that the effect exerted by leptin in cell migration in breast cancer cells is dependent on these proteins. Moreover, we established that leptin promotes the secretion of the extracellular matrix remodelers, MMP-2 and MMP-9 and invasion in a FAK and Src-dependent manner. Our findings strongly suggest that leptin promotes the development of a more aggressive invasive phenotype in mammary cancer cells.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 546
Author(s):  
Rémi Cousin ◽  
Hugo Groult ◽  
Chanez Manseur ◽  
Romain Ferru-Clément ◽  
Mario Gani ◽  
...  

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE “modulator” capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


2018 ◽  
Vol 19 (7) ◽  
pp. 2036
Author(s):  
Chiung-Min Wang ◽  
William Yang ◽  
Runhua Liu ◽  
Lizhong Wang ◽  
Wei-Hsiung Yang

Forkhead Box Protein P3 (FOXP3), a transcription factor of the FOX protein family, is essentially involved in the development of regulatory T (Treg) cells, and functions as a tumor suppressor. Although FOXP3 has been widely studied in immune system and cancer development, its function in the regulation of the UBC9 gene (for the sole E2 enzyme of SUMOylation) is unknown. Herein, we find that the overexpression of FOXP3 in human MCF7 breast cancer cells increases the level of UBC9 mRNA. Moreover, the level of UBC9 protein dose-dependently increases in the FOXP3-Tet-off MCF7 cells. Notably, the promoter activity of the UBC9 is activated by FOXP3 in a dose-dependent manner in both the MCF7 and HEK293 cells. Next, by mapping the UBC9 promoter as well as the site-directed mutagenesis and ChIP analysis, we show that the FOXP3 response element at the −310 bp region, but not the −2182 bp region, is mainly required for UBC9 activation by FOXP3. Finally, we demonstrate that the removal of phosphorylation (S418A and Y342F) and the removal of acetylation/ubiquitination (K263R and K263RK268R) of the FOXP3 result in attenuated transcriptional activity of UBC9. Taken together, FOXP3 acts as a novel transcriptional activator of the human UBC9 gene, suggesting that FOXP3 may have physiological functions as a novel player in global SUMOylation, as well as other post-translational modification systems.


2012 ◽  
Vol 393 (12) ◽  
pp. 1449-1455 ◽  
Author(s):  
Bettina Grismayer ◽  
Sumito Sato ◽  
Charlotte Kopitz ◽  
Christian Ries ◽  
Susanne Soelch ◽  
...  

Abstract mRNA levels of the urokinase receptor splice variant uPAR-del4/5 are associated with prognosis in breast cancer. Its overexpression in cancer cells affects tumor biologically relevant processes. In the present study, individual breast cancer cell clones displaying low vs. high uPAR-del4/5 expression were analyzed demonstrating that uPAR-del4/5 leads to reduced cell adhesion and invasion in a dose-dependent manner. Additionally, matrix metalloproteinase-9 (MMP-9) was found to be strongly upregulated in uPAR-del4/5 overexpressing compared to vector control cells. uPAR-del4/5 may thus play an important role in the regulation of the extracellular proteolytic network and, by this, influence the metastatic potential of breast cancer cells.


2013 ◽  
Vol 41 (01) ◽  
pp. 177-196 ◽  
Author(s):  
Shengpeng Wang ◽  
Zhangfeng Zhong ◽  
Jianbo Wan ◽  
Wen Tan ◽  
Guosheng Wu ◽  
...  

Oridonin, a natural tetracycline diterpenoid isolated from Chinese herb Rabdosia rubescens, has been reported to be a potent cytotoxic agent against a wide variety of tumors. However, its effect on highly metastatic breast cancer cells has not been addressed. In this study, we investigated the effects of oridonin on growth, migration and invasion of highly-metastatic human breast cancer cells. Our results showed that oridonin induced potent growth inhibition on human breast cancer cells MCF-7 and MDA-MB-231 in a time- and dose-dependent manner. According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Oridonin triggered the reduction of Bcl-2/Bax ratio, caspase-8, NF-κB (p65), IKKα, IKKβ, phospho-mTOR, and increased expression level of cleaved PARP, Fas and PPARγ in a time-dependent manner. Immunofluorescent analysis showed that γH2AX-containing nuclear foci were significant in oridonin-treated MDA-MB-231 cells. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin β1 and FAK. In conclusion, oridonin inhibited the growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin β1/FAK pathway in MDA-MB-231 cells.


2021 ◽  
Vol 20 ◽  
pp. 153303382110363
Author(s):  
Ameneh Jafari ◽  
Mostafa Rezaei-Tavirani ◽  
Hassan Niknejad ◽  
Hakimeh Zali

Objectives: Traditional breast cancer treatments have challenges including inefficiency, multidrug resistance, severe side effects, and targeting non-specifically. The development of alternative treatment strategies has attracted a great deal of interest. Using the amniotic membrane has become a promising and convenient new approach for cancer therapy. This study aimed to evaluate the anti-cancer ability of conditioned medium extracted from the human amniotic membrane (hAM-CM) on breast cancer cells. Methods: Conditioned medium was collected after 48 h incubation of hAM in epithelial up manner. MTT, cell cycle, apoptosis, colony formation, and sphere assays were used to determine the impact of hAM-CM on breast cancer cell lines. The effects of hAM-CM on the migration and invasion of breast cancer cells were determined using scratch wound healing and transwell assays, respectively. Results: Based on the results, cell viability was significantly decreased by hAM-CM in a dose-dependent manner. The hAM-CM remarkably induced apoptosis and necrosis of cancer cells. Moreover, cell migration and invasion potential of cancer cells decreased after the hAM-CM treatment. Further, both the number of colonies and their morphologies were affected by the treatment. In the treated group, a significant decrease in the number of colonies along with an obvious change in their morphologies from holoclone shape to a dominant paracolone structure was observed. Conclusion: Our results indicate that the conditioned medium derived from the human amniotic membrane able to inhibit proliferation and metastasis of tumor cells and can be considered a natural and valuable candidate for breast cancer therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Jae Woong Han ◽  
Vasuki Eppakayala ◽  
Muniyandi Jeyaraj ◽  
Jin-Hoi Kim

Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant ofBacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL) for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document