scholarly journals EphB4 Tyrosine Kinase Stimulation Inhibits Growth of MDA-MB-231 Breast Cancer Cells in a Dose and Time Dependent Manner

2013 ◽  
Vol 35 ◽  
pp. 933-938 ◽  
Author(s):  
Farnaz Barneh ◽  
Mona Moshayedi ◽  
Hamid Mirmohammadsadeghi ◽  
Shaghayegh Haghjooy-Javanmard ◽  
Ali Mohammad Sabzghabaee ◽  
...  

Background. EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc.Methods. Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence.Results. Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel.Conclusion. This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation.

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4293
Author(s):  
Xiaowen Liu ◽  
Manuel A. Riquelme ◽  
Yi Tian ◽  
Dezhi Zhao ◽  
Francisca M. Acosta ◽  
...  

ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 277 ◽  
Author(s):  
Xin-Ying Qu ◽  
Jin-Wei Ren ◽  
Ai-Hong Peng ◽  
Shi-Qi Lin ◽  
Dan-Dan Lu ◽  
...  

Four angucycline glycosides were previously characterized from marine-derived Streptomyces sp. OC1610.4. Further investigation of this strain cultured on different fermentation media from that used previously resulted in the isolation of two new angucycline glycosides, vineomycins E and F (1–2), and five known homologues, grincamycin L (3), vineomycinone B2 (4), fridamycin D (5), moromycin B (7), and saquayamycin B1 (8). Vineomycin F (2) contains an unusual ring-cleavage deoxy sugar. All the angucycline glycosides isolated from Streptomyces sp. OC1610.4 were evaluated for their cytotoxic activity against breast cancer cells MCF-7, MDA-MB-231, and BT-474. Moromycin B (7), saquayamycin B1 (8), and saquayamycin B (9) displayed potent anti-proliferation against the tested cell lines, with IC50 values ranging from 0.16 to 0.67 μM. Saquayamycin B (9) inhibited the migration and invasion of MDA-MB-231 cells in a dose-dependent manner, as detected by Transwell and wound-healing assays.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1568
Author(s):  
Merve Karataş ◽  
Ajda Coker-Gurkan ◽  
Elif Damla Arisan ◽  
Pınar Obakan-Yerlikaya ◽  
Narcin Palavan-Unsal

Autocrine growth hormone (GH) induced cell proliferation, invasion-metastasis and drug resistance in breast cancer cells. Curcumin has an apoptotic effect on colon, melanoma, cervix, and breast cancer cells. Autophagy and endoplasmic reticulum (ER) stress are essential cellular processes activated under nutrient deprivation, pathogen infection and drug exposure. Our aim in this study is to investigate the time-dependent effect of curcumin on ER stress and autophagy and potential increase of curcumin efficiency by bafilomycin treatment. Autocrine GH expression triggered resistant profile against curcumin-induced cell viability loss in MCF-7 cells. However, this effect was prevented by the time-dependent manner in MCF-7 cells. In GH+ breast cancer cells bafilomycin increase curcumin-induced cell viability loss by MTT cell viability assay. In conclusion, autocrine GH-triggered curcumin resistance was overcome by autophagy inhibition condition by bafilomycin treatment in a dose-dependent manner in MCF-7 GH+ breast cancer cells.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 278-278
Author(s):  
Ana Carolina Silveira Rabelo ◽  
Maria Angelica Miglino ◽  
Shirley Arbizu ◽  
Susanne Talcott ◽  
Ana Cláudia Carreira ◽  
...  

Abstract Objectives To investigate the mechanisms underlying the anticancer activity of Calotropis procera crude phenolics extract (CphE). Methods CphE were obtained from leaves homogenized with ethanol (1g:150 mL), followed by filtration and evaporation using a rotary evaporator. Quercetin was used as a positive control since is one of the major flavonoids in C. procera. 4T1 cells were treated with CphE (31–500 µg gallic acid equivalent (GAE)/mL), quercetin (Q) (0.6–3 µg/mL) or DMSO (control) to assess cell viability using resazurin kit and reactive oxygen species (ROS) using the Carboxy-H2DFFDA probe (Sigma-Aldrich, St Louis, MO). Protein and mRNA expression were investigated using standard procedures and cell migration by wound healing assay. Results 4T1 cell viability was inhibited by CphE (within 31–125 µg GAE/mL) and Q (0.6–3 µg/mL) in a dose-dependent manner, with IC50 = 49.6 µg GAE/mL and 1,75 µg/mL, respectively. However, ROS levels were decreased in cells treated with CphE (down to 0.7-fold of control) while Q induced ROS (up to 1.5-fold of control). These results suggest a contrasting response from 4T1 breast cancer cells to individual phenolics present in CphE. The CphE-induced caspase and PARP-dependent apoptosis and cell viability suppression were mediated by CphE-mediated oxidative stress reduction consistent with phospho-ERK1/2 downregulation (down to 0.4-fold of control). Conversely, Q apoptotic and cell viability suppression mechanisms are mediated by induction of ROS-phospho-ERK1/2 (up to 1.6-fold of control) axis. The Akt/mTOR/CREB pathway was downregulated at a similar extend by CphE and Q, consistent with cell migration (suppressed by 40% and 20% by CphE and Q, respectively) and with protein levels of phospho-Src (downregulated to ∼ 0.2-fold and 0.4-fold of control) and phospho-CREB (0.7-fold and 0.6-fold of control) by CphE and Q, respectively. Conclusions CphE inhibited cell viability, induced apoptosis and reduced cell migration. These effects were the result of the modulation of proteins that play an important role in epithelial-mesenchymal transition and cell invasion. These findings provide new insights into the anti-cancer mechanisms of C. procera as a promising herb used in folk medicine for breast cancer treatment. Funding Sources Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Universidade de São Paulo (USP).


2018 ◽  
Vol 19 (7) ◽  
pp. 2036
Author(s):  
Chiung-Min Wang ◽  
William Yang ◽  
Runhua Liu ◽  
Lizhong Wang ◽  
Wei-Hsiung Yang

Forkhead Box Protein P3 (FOXP3), a transcription factor of the FOX protein family, is essentially involved in the development of regulatory T (Treg) cells, and functions as a tumor suppressor. Although FOXP3 has been widely studied in immune system and cancer development, its function in the regulation of the UBC9 gene (for the sole E2 enzyme of SUMOylation) is unknown. Herein, we find that the overexpression of FOXP3 in human MCF7 breast cancer cells increases the level of UBC9 mRNA. Moreover, the level of UBC9 protein dose-dependently increases in the FOXP3-Tet-off MCF7 cells. Notably, the promoter activity of the UBC9 is activated by FOXP3 in a dose-dependent manner in both the MCF7 and HEK293 cells. Next, by mapping the UBC9 promoter as well as the site-directed mutagenesis and ChIP analysis, we show that the FOXP3 response element at the −310 bp region, but not the −2182 bp region, is mainly required for UBC9 activation by FOXP3. Finally, we demonstrate that the removal of phosphorylation (S418A and Y342F) and the removal of acetylation/ubiquitination (K263R and K263RK268R) of the FOXP3 result in attenuated transcriptional activity of UBC9. Taken together, FOXP3 acts as a novel transcriptional activator of the human UBC9 gene, suggesting that FOXP3 may have physiological functions as a novel player in global SUMOylation, as well as other post-translational modification systems.


2012 ◽  
Vol 393 (12) ◽  
pp. 1449-1455 ◽  
Author(s):  
Bettina Grismayer ◽  
Sumito Sato ◽  
Charlotte Kopitz ◽  
Christian Ries ◽  
Susanne Soelch ◽  
...  

Abstract mRNA levels of the urokinase receptor splice variant uPAR-del4/5 are associated with prognosis in breast cancer. Its overexpression in cancer cells affects tumor biologically relevant processes. In the present study, individual breast cancer cell clones displaying low vs. high uPAR-del4/5 expression were analyzed demonstrating that uPAR-del4/5 leads to reduced cell adhesion and invasion in a dose-dependent manner. Additionally, matrix metalloproteinase-9 (MMP-9) was found to be strongly upregulated in uPAR-del4/5 overexpressing compared to vector control cells. uPAR-del4/5 may thus play an important role in the regulation of the extracellular proteolytic network and, by this, influence the metastatic potential of breast cancer cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Amanda M. Clark ◽  
Haley L. Heusey ◽  
Linda G. Griffith ◽  
Douglas. A. Lauffenburger ◽  
Alan Wells

Metastatic breast cancer remains a largely incurable and fatal disease with liver involvement bearing the worst prognosis. The danger is compounded by a subset of disseminated tumor cells that may lie dormant for years to decades before re-emerging as clinically detectable metastases. Pathophysiological signals can drive these tumor cells to emerge. Prior studies indicated CXCR3 ligands as being the predominant signals synergistically and significantly unregulated during inflammation in the gut-liver axis. Of the CXCR3 ligands, IP-10 (CXCL10) was the most abundant, correlated significantly with shortened survival of human breast cancer patients with metastatic disease and was highest in those with triple negative (TNBC) disease. Using a complex ex vivo all-human liver microphysiological (MPS) model of dormant-emergent metastatic progression, CXCR3 ligands were found to be elevated in actively growing populations of metastatic TNBC breast cancer cells whereas they remained similar to the tumor-free hepatic niche in those with dormant breast cancer cells. Subsequent stimulation of dormant breast cancer cells in the ex vivo metastatic liver MPS model with IP-10 triggered their emergence in a dose-dependent manner. Emergence was indicated to occur indirectly possibly via activation of the resident liver cells in the surrounding metastatic microenvironment, as stimulation of breast cancer cells with exogenous IP-10 did not significantly change their migratory, invasive or proliferative behavior. The findings reveal that IP-10 is capable of triggering the emergence of dormant breast cancer cells within the liver metastatic niche and identifies the IP-10/CXCR3 as a candidate targetable pathway for rational approaches aimed at maintaining dormancy.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Sangiliyandi Gurunathan ◽  
Jae Woong Han ◽  
Vasuki Eppakayala ◽  
Muniyandi Jeyaraj ◽  
Jin-Hoi Kim

Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant ofBacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL) for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy.


2021 ◽  
Vol 901 ◽  
pp. 16-21
Author(s):  
Supavadee Boontha ◽  
Benjaporn Buranrat ◽  
Prapapan Temkitthawon ◽  
Tasana Pitaksuteepong

Phlogacanthus pulcherrimus T. Anderson (PPT) is an edible plant found in the northern and northeastern regions of Thailand. There is limited information about the anti-breast cancer activity of the ethanolic leaf extract of PPT. This study aimed to evaluate the effects of an ethanolic leaf extract of PPT on MCF-7 breast cancer cell lines. The biological effects, including cytotoxicity, cell apoptosis, colony formation, reactive oxygen species (ROS) formation and cell migration, were determined by a means of sulforhodamine B (SRB), acridine orange/ethidium bromide (AO/EB) staining, a clonogenic assay, flow cytometry and a scratch wound healing assay, respectively. The results demonstrated that the PPT extract showed cytotoxic on MCF-7 cells in a dose-dependent manner with 50% inhibitory concentration (IC50) values of 119.9 ± 12.1 and 51.3 ± 4.7 μg/mL at 24 h and 48 h incubation, respectively. In addition, the extract exhibited cell apoptosis in a dose-dependent manner when used at a concentration of 50–100 μg/mL and inhibited colony formation with an IC50 value of 26.0 ± 2.0 μg/mL when compared with the control group. The extract induced ROS formation in a dose-dependent manner when used at a concentration of 50–100 μg/mL. The extract suppressed MCF-7 cell migration, with significant effect at 25 μg/mL. These results indicate that PPT ethanolic leaf extract has an anticancer activity against MCF-7 breast cancer cells and may be useful for prevention and treatment of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document