scholarly journals Unusual Structures and Cytotoxicities of Chitonoidosides A, A1, B, C, D, and E, Six Triterpene Glycosides from the Far Eastern Sea Cucumber Psolus chitonoides

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 449
Author(s):  
Alexandra S. Silchenko ◽  
Anatoly I. Kalinovsky ◽  
Sergey A. Avilov ◽  
Pelageya V. Andrijaschenko ◽  
Roman S. Popov ◽  
...  

Six new triterpene tetra-, penta- and hexaosides, chitonoidosides A (1), A1 (2), B (3), C (4), D (5), and E (6), containing one or two sulfate groups, have been isolated from the Far-Eastern sea cucumber Psolus chitonoides, collected near Bering Island (Commander Islands) from the depth of 100–150 m. Three of the isolated compounds (1, 3 and 6) are characterized by the unusual aglycone of new type having 18(20)-ether bond and lacking a lactone in contrast with wide spread holostane derivatives. Another unexpected finding is 3-O-methylxylose residue as a terminal unit in the carbohydrate chains of chitonoidosides B (3), C (4), and E (6), which has never been found before in the glycosides from holothurians belonging to the Psolidae family. Moreover, this monosaccharide is sulfated in the compound 4 into unprecedented 3-O-methylxylose 4-O-sulfate residue. Chitonoidoside C (4) is characterized by tetrasaccharide moiety lacking a part of the bottom semi-chain, but having disaccharide fragment attached to C-4 of Xyl1. Such architecture is not common in sea cucumber glycosides. Cytotoxic activities of the compounds 1–5 against mouse and human erythrocytes and human cancer cell lines: adenocarcinoma HeLa, colorectal adenocarcinoma DLD-1, and leukemia promyeloblast HL-60 cells were studied. The cytotoxic effect of chitonoidoside d (5) was the most significant in this series due to the presence of pentasaccharide disulfated sugar chain in combination with holostane aglycone. Surprisingly, the glycosides 1 and 3, comprising the new aglycone without γ-lactone, demonstrated similar activity to the known compounds with holostane aglycones. Chitonoidoside C (4) was less cytotoxic due to the different architecture of the carbohydrate chain compared to the other glycosides and probably due to the presence of a sulfate group at C-4 in 3-O-MeXyl4.

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 696
Author(s):  
Alexandra S. Silchenko ◽  
Anatoly I. Kalinovsky ◽  
Sergey A. Avilov ◽  
Pelageya V. Andrijaschenko ◽  
Roman S. Popov ◽  
...  

Four new triterpene disulfated glycosides, chitonoidosides E1 (1), F (2), G (3), and H (4), were isolated from the Far-Eastern sea cucumber Psolus chitonoides and collected near Bering Island (Commander Islands) at depths of 100–150 m. Among them there are two hexaosides (1 and 3), differing from each other by the terminal (sixth) sugar residue, one pentaoside (4) and one tetraoside (2), characterized by a glycoside architecture of oligosaccharide chains with shortened bottom semi-chains, which is uncommon for sea cucumbers. Some additional distinctive structural features inherent in 1–4 were also found: the aglycone of a recently discovered new type, with 18(20)-ether bond and lacking a lactone in chitonoidoside G (3), glycoside 3-O-methylxylose residue in chitonoidoside E1 (1), which is rarely detected in sea cucumbers, and sulfated by uncommon position 4 terminal 3-O-methylglucose in chitonoidosides F (2) and H (4). The hemolytic activities of compounds 1–4 and chitonoidoside E against human erythrocytes and their cytotoxic action against the human cancer cell lines, adenocarcinoma HeLa, colorectal adenocarcinoma DLD-1, and monocytes THP-1, were studied. The glycoside with hexasaccharide chains (1, 3 and chitonoidoside E) were the most active against erythrocytes. A similar tendency was observed for the cytotoxicity against adenocarcinoma HeLa cells, but the demonstrated effects were moderate. The monocyte THP-1 cell line and erythrocytes were comparably sensitive to the action of the glycosides, but the activity of chitonoidosides E and E1 (1) significantly differed from that of 3 in relation to THP-1 cells. A tetraoside with a shortened bottom semi-chain, chitonoidoside F (2), displayed the weakest membranolytic effect in the series.


2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Alexandra S. Silchenko ◽  
Anatoly I. Kalinovsky ◽  
Sergey A. Avilov ◽  
Pelageya V. Andryjaschenko ◽  
Pavel S. Dmitrenok ◽  
...  

Six new triterpene glycosides, cladolosides A1–A6(1–6), have been isolated from the Vietnamese sea cucumber Cladolabes schmeltzii (Cladolabinae, Sclerodactylidae, Dendrochirotida). Structures of the glycosides were elucidated by 2D NMR spectroscopy and MS. All the glycosides have nonsulfated tetrasaccharide linear carbohydrate moieties. Glycoside 6 has a glucose residue as the third monosaccharide unit, while the rest of the compounds comprise a xylose in this postion of the carbohydrate chain. Glycosides 1–6 differ from each other in the structures of their holostane aglycones. Cytotoxic activities of glycosides 1–6 were studied against mouse spleenocytes, along with hemolytic activities against mouse erythrocytes. All the compounds, except cladoloside A5(5) posessing a hydroxy-group in the aglycone side chain, demonstrated rather strong cytotoxic and hemolytic effects. The most active glycosides were cladolosides A1(1) and A2(2) having two O-acetic groups and the xylose residue in the third position of the sugar chain.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 551
Author(s):  
Alexandra S. Silchenko ◽  
Anatoly I. Kalinovsky ◽  
Sergey A. Avilov ◽  
Pelageya V. Andrijaschenko ◽  
Roman S. Popov ◽  
...  

Six new monosulfated triterpene tetra-, penta- and hexaosides, namely, the kurilosides A1 (1), A2 (2), C1 (3), D (4), E (5) and F (6), as well as the known earlier kuriloside A (7), having unusual non-holostane aglycones without lactone, have been isolated from the sea cucumber Thyonidium (= Duasmodactyla) kurilensis (Levin) (Cucumariidae, Dendrochirotida), collected in the Sea of Okhotsk near Onekotan Island from a depth of 100 m. Structures of the glycosides were established by 2D NMR spectroscopy and HR-ESI mass spectrometry. Kurilosides of the groups A and E contain carbohydrate moieties with a rare architecture (a pentasaccharide branched by C(4) Xyl1), differing from each other in the second monosaccharide residue (quinovose or glucose, correspondingly); kurilosides of the group C are characterized by a unique tetrasaccharide branched by a C(4) Xyl1 sugar chain; and kurilosides of the groups D and F are hexaosides differing from each other in the presence of an O-methyl group in the fourth (terminal) sugar unit. All these glycosides contain a sulfate group at C-6 of the glucose residue attached to C-4 Xyl1 and the non-holostane aglycones have a 9(11) double bond and lack γ-lactone. The cytotoxic activities of compounds 1–7 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells and erythrocytes were studied. Kuriloside A1 (1) was the most active compound in the series, demonstrating strong cytotoxicity against the erythrocytes and JB-6 cells and a moderate effect against Neuro 2a cells.


2014 ◽  
Vol 9 (12) ◽  
pp. 1934578X1400901
Author(s):  
Hoang Le Tuan Anh ◽  
Nguyen Thi Thu Hien ◽  
Dan Thi Thuy Hang ◽  
Tran Minh Ha ◽  
Nguyen Xuan Nhiem ◽  
...  

A new ent-kaurane glycoside, annoglabasin H (1), and three known ent-kauranes, annoglabasin E (2), annoglabasin B (3), and 19-nor- ent-kaurent-4-ol-17-oic acid (4) were isolated from the fruits of Annona glabra. Their structures were determined by the combination of spectroscopic and chemical methods, including 1D- and 2D-NMR spectroscopy, as well as by comparison with the NMR data reported in the literature. The cytotoxic activities of these compounds were evaluated on four human cancer cell lines, LU-1, MCF-7, SK-Mel2, and KB. Compound 1 exhibited significant cytotoxic activity on all tested human cancer cell lines with IC50 values ranging from 3.7 to 4.6 μM.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2780
Author(s):  
Ozvaldo Linares-Anaya ◽  
Alcives Avila-Sorrosa ◽  
Francisco Díaz-Cedillo ◽  
Luis Ángel Gil-Ruiz ◽  
José Correa-Basurto ◽  
...  

A series of benzo [d] [1,3] azoles 2-substituted with benzyl- and allyl-sulfanyl groups were synthesized, and their cytotoxic activities were in vitro evaluated against a panel of six human cancer cell lines. The results showed that compounds BTA-1 and BMZ-2 have the best inhibitory effects, compound BMZ-2 being comparable in some cases with the reference drug tamoxifen and exhibiting a low cytotoxic effect against healthy cells. In silico molecular coupling studies at the tamoxifen binding site of ERα and GPER receptors revealed affinity and the possible mode of interaction of both compounds BTA-1 and BMZ-2.


Planta Medica ◽  
2018 ◽  
Vol 84 (17) ◽  
pp. 1292-1299 ◽  
Author(s):  
Guo-Chun Yang ◽  
Jia-Hui Hu ◽  
Bing-Long Li ◽  
Huan Liu ◽  
Jia-Yue Wang ◽  
...  

AbstractSix new neo-clerodane diterpenoids (1–6), scutebatas X – Z, A1-C1, along with twelve known ones (7–18) were obtained via the phytochemical investigation of the aerial parts of Scutellaria barbata. Their structures were established by detailed spectroscopic analysis. The absolute configurations of 1 and 2, as the representative members of this type, were identified based on a circular dichroic exciton chirality method. Moreover, in vitro cytotoxicity of compounds 1–6 were evaluated against three human cancer cell lines (SGC-7901, MCF-7, and A-549) using the MTT method. Compound 6 showed cytotoxic activities against all the three cell lines with IC50 values of 17.9, 29.9, and 35.7 µM, respectively.


2015 ◽  
Vol 10 (9) ◽  
pp. 1934578X1501000
Author(s):  
Hai-Ning Lv ◽  
Ke-Wu Zeng ◽  
Bing-Yu Liu ◽  
Yun Zhang ◽  
Peng-Fei Tu ◽  
...  

Murraya microphylla is the most closely related species to M. koenigii (Curry tree). Inspired by the traditional effects of M. koenigii, the antioxidant, anti-inflammatory, and cytotoxic activities of the essential oil and extracts of M. microphylla were evaluated for the first time. The light petroleum and chloroform extracts were found to be able to scavenge DPPH free radicals, inhibit linoleic acid peroxidation, and nitric oxide production, as well as to present cytotoxicity to the human cancer cell lines HepG2, Bel7402, Bel7403, and Hela, but the essential oil only showed moderate activities. Chemical analysis of the active extracts by LC-DAD-MSn indicated that carbazole alkaloids were the main constituents. GC-MS analysis of the essential oil resulted in identification of 91 constituents, representing 96.9% of the total oil, with ( E)-caryophyllene (18.4%) and terpinen-4-ol (12.6%) as the major constituents. These results demonstrate that M. microphylla has similar biological activities, as well as chemical constituents to M. koenigii, and the carbazole alkaloids were disclosed to be the main potential active components. A promising development as a flavor and potential therapeutic agent could thus be predicated for this plant.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2655 ◽  
Author(s):  
Lei ◽  
Lei ◽  
Zhou ◽  
Hu ◽  
Niu ◽  
...  

Four new compounds, including two new polyketides, heterocornols M and N (1, 2), and a pair of epimers, heterocornols O and P (3, 4), were isolated from the fermentation broth of the marine sponge-derived fungus Pestalotiopsis heterocornis XWS03F09, together with three known compounds (5–7). The new chemical structures were established on the basis of a spectroscopic analysis, optical rotation, experimental and calculated electronic circular dichroism (ECD). All of the compounds (1–7) were evaluated for their cytotoxic activities, and heterocornols M-P (1–4) exhibited cytotoxicities against four human cancer cell lines with IC50 values of 20.4–94.2 μM.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 616 ◽  
Author(s):  
Catarina Garcia ◽  
Epole Ntungwe ◽  
Ana Rebelo ◽  
Cláudia Bessa ◽  
Tijana Stankovic ◽  
...  

The Plectranthus genus is commonly used in traditional medicine due to its potential to treat several illnesses, including bacterial infections and cancer. As such, aiming to screen the antibacterial and cytotoxic activities of extracts, sixteen selected Plectranthus species with medicinal potential were studied. In total, 31 extracts obtained from 16 Plectranthus spp. were tested for their antibacterial and anticancer properties. Well diffusion method was used for preliminary antibacterial screening. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the five most active acetonic extracts (P. aliciae, P. japonicus, P. madagascariensis var. “Lynne”, P. stylesii, and P. strigosus) were determined. After preliminary toxicity evaluation on Artemia salina L., their cytotoxic properties were assessed on three human cancer cell lines (HCT116, MCF-7, and H460). These were also selected for mechanism of resistance studies (on NCI-H460/R and DLD1-TxR cells). An identified compound—parvifloron D—was tested in a pair of sensitive and MDR-Multidrug resistance cancer cells (NCI-H460 and NCI-H460/R) and in normal bronchial fibroblasts MRC-5. The chemical composition of the most active extract was studied through high performance liquid chromatography with a diode array detector (HPLC-DAD/UV) and liquid chromatography–mass spectrometry (LC–MS). Overall, P. strigosus acetonic extract showed the strongest antimicrobial and cytotoxic potential that could be explained by the presence of parvifloron D, a highly cytotoxic diterpene. This study provides valuable information on the use of the Plectranthus genus as a source of bioactive compounds, namely P. strigosus with the potential active ingredient the parvifloron D.


Sign in / Sign up

Export Citation Format

Share Document