scholarly journals Adsorption/Coagulation/Ceramic Microfiltration for Treating Challenging Waters for Drinking Water Production

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 91
Author(s):  
Margarida Campinas ◽  
Rui M. C. Viegas ◽  
Rosário Coelho ◽  
Helena Lucas ◽  
Maria João Rosa

Pressurized powdered activated carbon/coagulation/ceramic microfiltration (PAC/Alum/MF) was investigated at pilot scale for treating low turbidity and low natural organic matter (NOM) surface waters spiked with organic microcontaminants. A total of 11 trials with clarified or non-clarified waters spiked with pesticides, pharmaceutical compounds, or microcystins were conducted to assess the removal of microcontaminants, NOM (as 254 nm absorbance, A254, and dissolved organic carbon, DOC), trihalomethane formation potential (THMFP), aerobic endospores as protozoan (oo)cysts indicators, bacteriophages as viruses indicators, and regular drinking water quality parameters. PAC/(Alum)/MF achieved 75% to complete removal of total microcontaminants with 4–18 mg/L of a mesoporous PAC and 2 h contact time, with a reliable particle separation (turbidity < 0.03 NTU) and low aluminium residuals. Microcontaminants showed different amenabilities to PAC adsorption, depending on their charge, hydrophobicity (Log Kow), polar surface area and aromatic rings count. Compounds less amenable to adsorption showed higher vulnerability to NOM competition (higher A254 waters), greatly benefiting from DOC-normalized PAC dose increase. PAC/Alum/MF also attained 29–47% NOM median removal, decreasing THMFP by 26%. PAC complemented NOM removal by coagulation (+15–19%), though with no substantial improvement towards THMFP and membrane fouling. Furthermore, PAC/Alum/MF was a full barrier against aerobic endospores, and PAC dosing was crucial for ≥1.1-log reduction in bacteriophages.

2013 ◽  
Vol 14 (3) ◽  
pp. 453-460 ◽  
Author(s):  
I. Rahman ◽  
S. Ndiongue ◽  
X. Jin ◽  
M. I. Van Dyke ◽  
W. B. Anderson ◽  
...  

Fouling is a major challenge for low-pressure membrane drinking water treatment systems. Previous research has demonstrated that under the right conditions, biofiltration is an effective method to reduce fouling of low-pressure polymeric membranes. This study provides additional insight into the effect of biofiltration as a pretreatment for fouling reduction by using river water with different raw water quality characteristics than has been examined in previous studies. Two parallel pilot-scale dual media (sand/anthracite) biological filters were operated continuously over a period of 14 months. Liquid chromatography–organic carbon detection analysis confirmed that the parallel biofilters performed similarly with both averaging on 21% biopolymer removal. Raw and treated water biopolymer concentrations were correlated, with increased absolute removals occurring at higher raw water concentrations. Ultrafiltration (UF) membrane fouling experiments showed substantial improvement in performance following biofiltration pretreatment by reducing hydraulically irreversible and reversible fouling rates by 14–68% and 8–55%, respectively. The results also reaffirm the importance of biopolymers at concentrations as low as ∼0.1 mg/L on irreversible and reversible UF membrane fouling and a minimal impact of humic substances.


2012 ◽  
Vol 212-213 ◽  
pp. 600-604
Author(s):  
Ya Li Song ◽  
Bing Zhi Dong ◽  
Nai Yun Gao ◽  
Yu Fang Yang ◽  
Chun Chang

The study concerns on drinking water treatment with combining ozonation process, coagulation and Microfiltration (MF) of Poly-vinylidene Fluoride (PVDF) in a dead-end filtration. The pilot-scale process consists of several parts: pre-ozonation, coagulation, sedimentation and microfiltration membrane separation. Ozone of 0.5mg/l and alum of 10 mg/l were added into raw water. The experience focuses on investigation of permeate water quality and variation of trans-membrane pressure (TMP). The results of the study showed that good permeate quality were fulfilled. Turbidity of permeate was consistently below 0.1 NTU. The MF membrane removed iron perfectly, which was below 0.3 mg/l. The reduction of manganese and CODMn met the China Drinking Water Regulations. Additionally, TMP was stable during filtration for a long time and ozone could delay membrane fouling. Chemical cleaning of membrane could decrease TMP to initial level, and chemical analysis for chemical cleaning solution shown that organic matters and manganese caused membrane fouling.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 15-22
Author(s):  
P. Kouadio ◽  
M. Tétrault

Three colored surface water nanofiltration pilot-scale projects were conducted in the province of Quebec (eastern Canada), between November 2000 and March 2002, by the company H2O Innovation (2000) inc., for the municipalities of Lac Bouchette, Latulipe-et-Gaboury and Charlesbourg (now part of Quebec City). Results indicated that nanofiltration permeate quality has an advance on present drinking water regulation standard in Quebec, but important membrane fouling occurred. Fouling can be controlled by pretreatment and optimization of the operating conditions.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Maria Yu ◽  
Elin Lavonen ◽  
Agneta Oskarsson ◽  
Johan Lundqvist

Abstract Background Bioanalytical tools have been shown to be useful in drinking water quality assessments. Here, we applied a panel of in vitro bioassays to assess the treatment efficiency of two pilot-scale treatments: ozonation and granular activated carbon (GAC) filtration at a drinking water treatment plant (DWTP). The pilot-scale systems were studied alongside a full-scale treatment process consisting of biological activated carbon (BAC) filtration, UV disinfection, and monochloramine dosing. Both systems were fed the same raw water treated with coagulation/flocculation/sedimentation and sand filtration. The endpoints studied were oxidative stress (Nrf2 activity), genotoxicity (micronuclei formations), aryl hydrocarbon receptor (AhR) activation, as well as estrogen receptor (ER) and androgen receptor (AR) activity. Results Nrf2, AhR, and ER activities and genotoxic effects were detected in the incoming raw water and variability was observed between the sampling events. Compared to most of the samples taken from the full-scale treatment system, lower Nrf2, AhR, and ER bioactivities as well as genotoxicity were observed in all samples from the pilot-scale systems across all sampling events. The most pronounced treatment effect was a 12-fold reduction in Nrf2 activity and a sixfold decrease in micronuclei formations following ozonation alone. GAC filtration alone resulted in sevenfold and fivefold reductions in Nrf2 activity and genotoxicity, respectively, in the same sampling event. Higher bioactivities were detected in most samples from the full-scale system suggesting a lack of treatment effect. No androgenic nor anti-androgenic activities were observed in any sample across all sampling events. Conclusions Using effect-based methods, we have shown the presence of bioactive chemicals in the raw water used for drinking water production, including oxidative stress, AhR and ER activities as well as genotoxicity. The currently used treatment technologies were unable to fully remove the observed bioactivities. Ozonation and GAC filtration showed a high treatment efficiency and were able to consistently remove the bioactivities observed in the incoming water. This is important knowledge for the optimization of existing drinking water treatment designs and the utilization of alternative treatment technologies.


Desalination ◽  
2011 ◽  
Vol 272 (1-3) ◽  
pp. 1-8 ◽  
Author(s):  
Wei Gao ◽  
Heng Liang ◽  
Jun Ma ◽  
Mei Han ◽  
Zhong-lin Chen ◽  
...  

2014 ◽  
Vol 955-959 ◽  
pp. 3408-3413 ◽  
Author(s):  
Hong Wei Sun

Comparative study on permanganate and ozone as pre-oxidation agents were performed on pilot scale with traditional drinking water treatment process, chemical oxygen demand (COD), total organic carbon (TOC), UV254, turbidity, trihalomethane formation potential (THMFP) were examined at each reactor’s effluent. The results show that at pre-oxidation reactor, the total organic remained stable after by the two agents, while for UV254, pre-ozonation has a removal rate of 34%, comparing that of 17% by permanganate. At the sedimentation process, 0.4 mg/L permanganate improves the removal rate of turbidity and COD by 0.99 % and 8.4%, respectively; while a positive COD removal of 11.8 % was achieved by 0.9 mg/L pre-ozonation, and an average of-10.08% turbidity removal was achieved at applied dosage (0.5, 0,9 and 1.5 mg/L), which can be made up for in the followed sand filtration reactor. Both permanganate and pre-ozonation show higher removal rate of THMFP for the finished water.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 367-371 ◽  
Author(s):  
M. Ribau Teixeira ◽  
H. Lucas ◽  
M.J. Rosa

The effect of the pH on the ultrafiltration performance of natural surface waters with moderate NOM content was evaluated at a laboratory scale using a plate-and-frame polysulphone membrane of 47 kDa MWCO. The results at three different pH values (acid, neutral and basic) demonstrated the important role of the pH on the ultrafiltration (UF) performance controlling the membrane - fouling matter interactions. The higher fluxes and lower natural organic matter (NOM) rejections obtained, at basic pH when compared to acid pH, are explained in terms of the variation of membrane and NOM charge, due to electrostatic repulsion and adsorption effects.


Sign in / Sign up

Export Citation Format

Share Document