scholarly journals Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 435
Author(s):  
Zhao-Yu Ma ◽  
Yu-Ren Xue ◽  
Zhi-Kang Xu

The deepening crisis of freshwater resources has been driving the further development of new types of membrane-based desalination technologies represented by nanofiltration membranes. Solving the existing trade-off limitation on enhancing the water permeance and the rejection of salts is currently one of the most concerned research interests. Here, a facile and scalable approach is proposed to tune the interfacial polymerization by constructing a calcium alginate hydrogel layer on the porous substrates. The evenly coated thin hydrogel layer can not only store amine monomers like the aqueous phase but also suppress the diffusion of amine monomers inside, as well as provide a flat and stable interface to implement the interfacial polymerization. The resultant polyamide nanofilms have a relatively smooth morphology, negatively charged surface, and reduced thickness which facilitate a fast water permeation while maintaining rejection efficiency. As a result, the as-prepared composite membranes show improved water permeance (~30 Lm−2h−1bar−1) and comparable rejection of Na2SO4 (>97%) in practical applications. It is proved to be a feasible approach to manufacturing high-performance nanofiltration membranes with the assist of alginate hydrogel regulating interfacial polymerization.

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jinmei Liu ◽  
Long Gu ◽  
Nuanyang Cui ◽  
Qi Xu ◽  
Yong Qin ◽  
...  

In the past decades, the progress of wearable and portable electronics is quite rapid, but the power supply has been a great challenge for their practical applications. Wearable power sources, especially wearable energy-harvesting devices, provide some possible solutions for this challenge. Among various wearable energy harvesters, the high-performance fabric-based triboelectric nanogenerators (TENGs) are particularly significant. In this review paper, we first introduce the fundamentals of TENGs and their four basic working modes. Then, we will discuss the material synthesis, device design, and fabrication of fabric-based TENGs. Finally, we try to give some problems that need to be solved for the further development of TENGs.


Desalination ◽  
2022 ◽  
Vol 519 ◽  
pp. 115308
Author(s):  
Yuhao Chen ◽  
Haixiang Sun ◽  
Hongbin Zhang ◽  
Kuo Chen ◽  
Dingdong Chai ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (68) ◽  
pp. 42800-42810 ◽  
Author(s):  
Shanshan Yang ◽  
Hongyan Zhen ◽  
Baowei Su

High performance solvent resistant nanofiltration membranes are fabricated via interfacial polymerization between m-phenylenediamine and 1,2,4,5-benzenetetra acylchloride on hydrolyzed polyacrylonitrile supports followed by chemical imidization.


2015 ◽  
Vol 17 (37) ◽  
pp. 24201-24209 ◽  
Author(s):  
Zhiwei Lv ◽  
Jiahui Hu ◽  
Xuan Zhang ◽  
Lianjun Wang

In the current study, thin-film composite (TFC) nanofiltration membranes desirable for water softening were successfully developed through interfacial polymerization using N-(2-hydroxyethyl)ethylenediamine (HEDA) as the amine monomer in the aqueous phase.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziqi Wang ◽  
Liubing Dong ◽  
Weiyuan Huang ◽  
Hao Jia ◽  
Qinghe Zhao ◽  
...  

AbstractOwing to the merits of low cost, high safety and environmental benignity, rechargeable aqueous Zn-based batteries (ZBs) have gained tremendous attention in recent years. Nevertheless, the poor reversibility of Zn anodes that originates from dendrite growth, surface passivation and corrosion, severely hinders the further development of ZBs. To tackle these issues, here we report a Janus separator based on a Zn-ion conductive metal–organic framework (MOF) and reduced graphene oxide (rGO), which is able to regulate uniform Zn2+ flux and electron conduction simultaneously during battery operation. Facilitated by the MOF/rGO bifunctional interlayers, the Zn anodes demonstrate stable plating/stripping behavior (over 500 h at 1 mA cm−2), high Coulombic efficiency (99.2% at 2 mA cm−2 after 100 cycles) and reduced redox barrier. Moreover, it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface. Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells, which deliver nearly 100% capacity retention after 2000 cycles at 4 A g−1 and high power density over 10 kW kg−1. This work provides a feasible route to the high-performance Zn anodes for ZBs.


Sign in / Sign up

Export Citation Format

Share Document