scholarly journals Antibacterial Ferroelectric Hybrid Membranes Fabricated via Electrospinning for Wound Healing

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 986
Author(s):  
Ivan V. Lukiev ◽  
Ludmila S. Antipina ◽  
Semen I. Goreninskii ◽  
Tamara S. Tverdokhlebova ◽  
Dmitry V. Vasilchenko ◽  
...  

In the present study, wound healing ferroelectric membranes doped with zinc oxide nanoparticles were fabricated from vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone using the electrospinning technique. Five different ratios of vinylidene fluoride-tetrafluoroethylene to polyvinylpyrrolidone were used to control the properties of the membranes at a constant zinc oxide nanoparticle content. It was found that an increase of polyvinylpyrrolidone content leads to a decrease of the spinning solution conductivity and viscosity, causing a decrease of the average fiber diameter and reducing their strength and elongation. By means of X-ray diffraction and infrared spectroscopy, it was revealed that increased polyvinylpyrrolidone content leads to difficulty in crystallization of the vinylidene fluoride-tetrafluoroethylene copolymer in the ferroelectric β-phase in membranes. Changing the ratio of vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone with a constant content of zinc oxide nanoparticles is an effective approach to control the antibacterial properties of membranes towards Staphylococcus aureus. After carrying out in vivo experiments, we found that ferroelectric hybrid membranes, containing from five to ten mass percent of PVP, have the greatest wound-healing effect for the healing of purulent wounds.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2889
Author(s):  
Marina Bandeira ◽  
Bor Shin Chee ◽  
Rafaele Frassini ◽  
Michael Nugent ◽  
Marcelo Giovanela ◽  
...  

Wound infections are the main complication when treating skin wounds. This work reports a novel antimicrobial material using green synthesized zinc oxide nanoparticles (ZnONPs) incorporated in polymeric fibers for wound healing purposes. ZnONPs are a promising antimicrobial nanomaterial with high activity against a range of microorganisms, including drug-resistant bacteria. The electrospun fibers were obtained using polyacrylic acid (PAA) and polyallylamine hydrochloride (PAH) and were loaded with ZnONPs green synthesized from Ilex paraguariensis leaves with a spherical shape and ~18 nm diameter size. The fibers were produced using the electrospinning technique and SEM images showed a uniform morphology with a diameter of ~230 nm. EDS analysis proved a consistent dispersion of Zn in the fiber mat, however, particle agglomerates with varying sizes were observed. FTIR spectra confirmed the interaction of PAA carboxylic groups with the amine of PAH molecules. Although ZnONPs presented higher antimicrobial activity against S. aureus than E. coli, resazurin viability assay revealed that the PAA/PAH/ZnONPs composite successfully inhibited both bacteria strains growth. Photomicrographs support these results where bacteria clusters were observed only in the control samples. The PAA/PAH/ZnONPs composite developed presents antimicrobial activity and mimics the extracellular matrix morphology of skin tissue, showing potential for wound healing treatments.


2021 ◽  
Author(s):  
Elsayim Rasha ◽  
Alkhulaifi Manal ◽  
AlOthman Monerah ◽  
Ibrahim Khalid ◽  
Elnagar Doaa ◽  
...  

Abstract Currently, the mortality rate is increasing in Saudi Arabia's ICU, due to the spread of KPC. This project was carried out to evaluate the ability of the biological synthesized of zinc Oxide nanoparticles (ZnO-NPs) using Aspergillus niger to overcome Carbapenem-Resistant Klebsiella pneumonia (KPC) in vitro and in vivo. ZnO-NPs was synthesized via a biological method and characterized using UV-Vis spectroscopy, Zeta sizer and Zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In vitro sensitivity of KPC to ZnO-NPs was identified using the well diffusion method, MIC and MBC was determined by macro dilution method. The morphological alteration of KPC cell after ZnO-NPs treatment was showed by SEM. In vivo susceptibility of KPC to ZnO-NPs ointment was evaluated using wound healing in experimental rats. The chemical characterization findings showed the formation, stability, shape and size of the synthesized nanoparticles. The MIC and MBC results was found in 0.7mg\ml and 1.8mg\ml respectively. in vivo results displayed the inflammation reduction and wound healing re-epithelialisation of kpc infected rats. these findings demonstrated that ZnO-NPs has great potential to be developed as antibacterial agents and wound healing.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 713
Author(s):  
Nina Melnikova ◽  
Alexander Knyazev ◽  
Viktor Nikolskiy ◽  
Peter Peretyagin ◽  
Kseniia Belyaeva ◽  
...  

A design of new nanocomposites of bacterial cellulose (BC) and betulin diphosphate (BDP) pre-impregnated into the surface of zinc oxide nanoparticles (ZnO NPs) for the production of wound dressings is proposed. The sizes of crystalline BC and ZnO NPs (5–25%) corresponded to 5–6 nm and 10–18 nm, respectively (powder X-ray diffractometry (PXRD), Fourier-infrared (FTIR), ultraviolet (UV), atomic absorption (AAS) and photoluminescence (PL) spectroscopies). The biological activity of the wound dressings “BC-ZnO NPs-BDP” was investigated in rats using a burn wound model. Morpho-histological studies have shown that more intensive healing was observed during treatment with hydrophilic nanocomposites than the oleophilic standard (ZnO NPs-BDP oleogel; p < 0.001). Treatment by both hydrophilic and lipophilic agents led to increases in antioxidant enzyme activity (superoxide dismutase (SOD), catalase) in erythrocytes and decreases in the malondialdehyde (MDA) concentration by 7, 10 and 21 days (p < 0.001). The microcirculation index was restored on the 3rd day after burn under treatment with BC-ZnO NPs-BDP wound dressings. The results of effective wound healing with BC-ZnO NPs-BDP nanocomposites can be explained by the synergistic effect of all nanocomposite components, which regulate oxygenation and microcirculation, reducing hypoxia and oxidative stress in a burn wound.


2021 ◽  
Vol 8 (8) ◽  
pp. 4483-4496
Author(s):  
Aliaa M. Radwan ◽  
Eman F. Aboelfetoh ◽  
Tetsunari Kimura ◽  
Tarek M. Mohamed ◽  
Mai M. El-Keiy

Author(s):  
Mohd Riyaz Beg ◽  
Shital Ghodinde ◽  
Vidhi Gupta

In this changing world, we all are surrounded by the surmountable risk of getting injured. Amongst various risk factors, major burns are the most distressing and catastrophic. Burn wounds are not easy to heal via natural healing process and ultimately ended up with scar formation. If the degree of burn is high then the loss of tissue and its function is very common. To fasten-up the natural burn wound healing; zinc, an essential trace element is found to be very much effective. But due to its&rsquo; particle size limitation, less contact with wounded cells and tissues, and high inherent toxicity restrict its use. Needlessly, zinc is an element with dual action i.e. both antimicrobial and wound healing it is a prime choice to apply its aptitude in burn wound healing. To overcome the documented limitations zinc has converted to nanoparticle form. Zinc oxide nanoparticles, in particular, have attained ample of interest due to their unique properties and potential antimicrobial activity along with wound healing activity which makes it promising for the healing of topical burn wounds. Plant mediated green synthesis of nano-metal oxide particles is gaining a lot of significance due to its simplicity, eco-friendliness and extensive antimicrobial activity and recommended as an appealing substitute to not only physical methods but also chemical methods avoiding the use of the high rate of toxic chemicals and extreme surroundings. This study includes ZnO NPs role in burn wound healing with Phyto-mediated synthesis methods to provide evidence of their potential applications. Additionally, it provides an overview of traditional methods used for the synthesis of ZnO nanoparticles and characterization techniques to obtain information concerning the size, shape and optical properties along with toxicity and safety concern of ZnO NPs and its biomedical applications.


2021 ◽  
Author(s):  
Fereshteh Shahbazi ◽  
Reza Ahmadi ◽  
Mohammad Noghani ◽  
Gholamreza Karimi

Abstract With the increase in diseases caused by bacterial and viral infections, the need for antibiotics has increased. On the other hand, by creating drug resistance to organicmoietiesbased antibiotics, novel antibiotics have attracted the attention of researchers.Nano-scale metal oxides are increasingly being considered for medical applications, especially as antibacterial agents.In this study, iron oxide nanoparticles (IONPs) and zinc oxide nanoparticles (ZONPs) were prepared via electrical discharge method in liquid medium by changing parameters such as wire diameter and electric current intensity. Synthesized NPs were evaluated by XRD, UV_Visible, FE_SEM, EDS, HR_TEM and TEM analyzes. Also, the antibacterial properties of these nanoparticles were evaluated in different ways against gram-positive and gram-negative bacteria.


Toxicology ◽  
2017 ◽  
Vol 380 ◽  
pp. 72-93 ◽  
Author(s):  
Ilzira A. Minigalieva ◽  
Boris A. Katsnelson ◽  
Vladimir G. Panov ◽  
Larisa I. Privalova ◽  
Anatoly N. Varaksin ◽  
...  

2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


Sign in / Sign up

Export Citation Format

Share Document