scholarly journals Heat to Hydrogen by RED—Reviewing Membranes and Salts for the RED Heat Engine Concept

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Pauline Zimmermann ◽  
Simon Birger Byremo Solberg ◽  
Önder Tekinalp ◽  
Jacob Joseph Lamb ◽  
Øivind Wilhelmsen ◽  
...  

The Reverse electrodialysis heat engine (REDHE) combines a reverse electrodialysis stack for power generation with a thermal regeneration unit to restore the concentration difference of the salt solutions. Current approaches for converting low-temperature waste heat to electricity with REDHE have not yielded conversion efficiencies and profits that would allow for the industrialization of the technology. This review explores the concept of Heat-to-Hydrogen with REDHEs and maps crucial developments toward industrialization. We discuss current advances in membrane development that are vital for the breakthrough of the RED Heat Engine. In addition, the choice of salt is a crucial factor that has not received enough attention in the field. Based on ion properties relevant for both the transport through IEMs and the feasibility for regeneration, we pinpoint the most promising salts for use in REDHE, which we find to be KNO3, LiNO3, LiBr and LiCl. To further validate these results and compare the system performance with different salts, there is a demand for a comprehensive thermodynamic model of the REDHE that considers all its units. Guided by such a model, experimental studies can be designed to utilize the most favorable process conditions (e.g., salt solutions).

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3206 ◽  
Author(s):  
◽  
George Kosmadakis ◽  
Francesco Giacalone ◽  
Bartolomé Ortega-Delgado ◽  
Andrea Cipollina ◽  
...  

In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at about 0.03 €/kWh, is achieved using potassium acetate salt and six MED effects while reheating the solutions. A similar analysis has been conducted when using the system in energy storage mode, where the two regenerated solutions are stored in reservoir tanks and the RED is operating for a few hours per day, supplying valuable peak power, resulting in a LCOE just below 0.10 €/kWh. A life-cycle assessment has been also carried out, showing that the case with the lowest environmental impact is the same as the one with the most attractive economic performance. Results indicate that the material manufacturing has the main impact; primarily the metallic parts of the MED. Overall, this study highlights the development efforts required in terms of both membrane performance and cost reduction, in order to make this technology cost effective in the future.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 135
Author(s):  
Yash Dharmendra Raka ◽  
Robert Bock ◽  
Håvard Karoliussen ◽  
Øivind Wilhelmsen ◽  
Odne Stokke Burheim

The ohmic resistances of the anion and cation ion-exchange membranes (IEMs) that constitute a reverse electrodialysis system (RED) are of crucial importance for its performance. In this work, we study the influence of concentration (0.1 M, 0.5 M, 1 M and 2 M) of ammonium bicarbonate solutions on the ohmic resistances of ten commercial IEMs. We also studied the ohmic resistance at elevated temperature 313 K. Measurements have been performed with a direct two-electrode electrochemical impedance spectroscopy (EIS) method. As the ohmic resistance of the IEMs depends linearly on the membrane thickness, we measured the impedance for three different layered thicknesses, and the results were normalised. To gauge the role of the membrane resistances in the use of RED for production of hydrogen by use of waste heat, we used a thermodynamic and an economic model to study the impact of the ohmic resistance of the IEMs on hydrogen production rate, waste heat required, thermochemical conversion efficiency and the levelised cost of hydrogen. The highest performance was achieved with a stack made of FAS30 and CSO Type IEMs, producing hydrogen at 8.48× 10−7 kg mmem−2s−1 with a waste heat requirement of 344 kWh kg−1 hydrogen. This yielded an operating efficiency of 9.7% and a levelised cost of 7.80 € kgH2−1.


2016 ◽  
Vol 37 (4) ◽  
pp. 485-501 ◽  
Author(s):  
Józef Nastaj ◽  
Małgorzata Tuligłowicz ◽  
Konrad Witkiewicz

Abstract The objective of the work are in-depth experimental studies of Cu(II) and Zn(II) ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II) and Zn(II) ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II) and Zn(II) ions (1:1, 1:2, 2:1). Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.


2018 ◽  
Vol 23 (1) ◽  
Author(s):  
Johny Anderson Severo ◽  
Regina Célia Espinosa Modolo ◽  
Carlos Alberto Mendes Moraes ◽  
Flávia Schwarz Franceschini Zinani

ABSTRACT Improper disposal of sand used in molding processes after casting increases logistical costs and environmental impact because of the presence of the phenolic resin in its composition. The regeneration process of waste foundry phenolic sand (WFPS) aims to recycle this material. As mechanical regeneration methods are not efficient to guarantee 100% cleaning of the sand grains and their use again in the molding process, this work investigated the efficiency of a method of thermal regeneration of this type of residue that can be employed as a complementary procedure. A laboratory-scale fluidized bed reactor was designed and built to regenerate WFPS that was previously treated by a mechanical method. The methodology used to design and construct the fluidized bed prototype is described, as well as the characterization of the residual, the standard clean sand and the regenerated sand. The results of the thermal regeneration in the fluidized bed were very satisfactory with respect to the regeneration efficiency. For the nine process conditions tested, loss on ignition values were reduced when compared to standard clean sand. This study presents the advantages of a combination of two processes, mechanical and thermal regeneration, which allows to reduce the time and eventual temperature of resin removal due to the partial removal of the resin layer or its weakening during the mechanical regeneration process. Of the nine process conditions tested, six had loss on ignition values below the CSS. Thus, the thermal regeneration in the fluidized bed results was quite satisfactory in relation to the regeneration efficiency.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3276 ◽  
Author(s):  
Jan Wajs ◽  
Michał Bajor ◽  
Dariusz Mikielewicz

In this paper a patented design of a heat exchanger with minijets, with a cylindrical construction is presented. It is followed by the results of its systematic experimental investigations in the single-phase convection heat transfer mode. Based on these results, validation of selected correlations (coming from the literature) describing the Nusselt number was carried out. An assessment of the heat exchange intensification level in the described heat exchanger was done through the comparison with a shell-and-tube exchanger of a classical design. The thermal-hydraulic characteristics of both units were the subjects of comparison. They were constructed for the identical thermal conditions, i.e., volumetric flow rates of the working media and the media temperatures at the inlets to the heat exchanger. The experimental studies of both heat exchangers were conducted on the same test facility. An increase in the heat transfer coefficients values for the minijets heat exchanger was observed in comparison with the reference one, whereas the generated minijets caused greater hydraulic resistance. Experimentally confirmed intensification of heat transfer on the air side, makes the proposed minijets heat exchanger application more attractive, for the waste heat utilization systems from gas sources.


2018 ◽  
Vol 85 (13) ◽  
pp. 147-161 ◽  
Author(s):  
Ellen Synnøve Skilbred ◽  
Kjersti Wergeland Krakhella ◽  
Ida Johanne Molvik Haga ◽  
Jon G. Pharoah ◽  
Magne Hillestad ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 747
Author(s):  
Samah Hashim Albayati ◽  
Malihe Masomian ◽  
Siti Nor Hasmah Ishak ◽  
Mohd Shukuri bin Mohamad Ali ◽  
Adam Leow Thean ◽  
...  

Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.


2019 ◽  
Vol 253 ◽  
pp. 113489 ◽  
Author(s):  
B. Ortega-Delgado ◽  
F. Giacalone ◽  
A. Cipollina ◽  
M. Papapetrou ◽  
G. Kosmadakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document