scholarly journals Shear Band Formation in Amorphous Materials under Oscillatory Shear Deformation

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 300 ◽  
Author(s):  
Nikolai V. Priezjev

The effect of periodic shear on strain localization in disordered solids is investigated using molecular dynamics simulations. We consider a binary mixture of one million atoms annealed to a low temperature with different cooling rates and then subjected to oscillatory shear deformation with a strain amplitude slightly above the critical value. It is found that the yielding transition occurs during one cycle but the accumulation of irreversible displacements and initiation of the shear band proceed over larger number of cycles for more slowly annealed glasses. The spatial distribution and correlation function of nonaffine displacements reveal that their collective dynamics changes from homogeneously distributed small clusters to a system-spanning shear band. The analysis of spatially averaged profiles of nonaffine displacements indicates that the location of a shear band in periodically loaded glasses can be identified at least several cycles before yielding. These insights are important for the development of novel processing methods and prediction of the fatigue lifetime of metallic glasses.

Soft Matter ◽  
2019 ◽  
Vol 15 (22) ◽  
pp. 4548-4561 ◽  
Author(s):  
Robert J. S. Ivancic ◽  
Robert A. Riggleman

Shear band formation often proceeds fracture in amorphous materials. While mesoscale models postulate an underlying defect structure to explain this phenomenon, they do not detail the microscopic properties of these defects especially in strongly confined materials. Here, we use machine learning methods to uncover these microscopic defects in simulated polymer nanopillars.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


2021 ◽  
Vol 7 (20) ◽  
pp. eabe3392
Author(s):  
Erin G. Teich ◽  
K. Lawrence Galloway ◽  
Paulo E. Arratia ◽  
Danielle S. Bassett

The nature of yield in amorphous materials under stress has yet to be fully elucidated. In particular, understanding how microscopic rearrangement gives rise to macroscopic structural and rheological signatures in disordered systems is vital for the prediction and characterization of yield and the study of how memory is stored in disordered materials. Here, we investigate the evolution of local structural homogeneity on an individual particle level in amorphous jammed two-dimensional (athermal) systems under oscillatory shear and relate this evolution to rearrangement, memory, and macroscale rheological measurements. We define the structural metric crystalline shielding, and show that it is predictive of rearrangement propensity and structural volatility of individual particles under shear. We use this metric to identify localized regions of the system in which the material’s memory of its preparation is preserved. Our results contribute to a growing understanding of how local structure relates to dynamic response and memory in disordered systems.


2003 ◽  
Vol 81 (1-2) ◽  
pp. 325-332 ◽  
Author(s):  
P LM Plummer

Continuing our investigations of the energetics associated with defect formation and migration, both ab initio energy-structure calculations and molecular dynamics simulations are carried out on small clusters of water molecules containing one or more defects in hydrogen bonding. Previous studies in this series have identified structures containing defects that are stable at 0 K or that are transition states between such structures. However, results from this laboratory and elsewhere have shown that the energy required for the production or migration of a defect is more complex than merely the energy difference between the static structures. Cooperative motion of neighbors to the defect site can either increase or decrease the energy involved to produce or annihilate the defect. Thus, experimental measurements associated with the energy of defects in ice can differ substantially from those calculated using static models. By increasing the complexity of the model, the studies described in this report attempt to more realistically simulate a defect-containing ice system. The types of defects studied include ion and ion-pair defects. The initial structures are energetically stable — minima on the electronic energy surface — and contain one or more kinds of defects. Since the means and amount of energy injection can alter the migration path, the energy is introduced into the system in a variety of ways. The structural evolution of the ice system is then monitored as a function of time. PACS Nos.: 82.20Wt, 82.20Kh, 82.30Rs


2021 ◽  
Vol 199 ◽  
pp. 109416
Author(s):  
Xiaoyang Liu ◽  
Takafumi Wada ◽  
Asuka Suzuki ◽  
Naoki Takata ◽  
Makoto Kobashi ◽  
...  

1999 ◽  
Vol 66 (1) ◽  
pp. 3-9 ◽  
Author(s):  
V. Tvergaard

Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed.


Sign in / Sign up

Export Citation Format

Share Document