scholarly journals Stabilizing Arsenic in Copper Heap Leaching Residues

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1242
Author(s):  
Oscar Benavente ◽  
María Cecilia Hernández ◽  
Evelyn Melo ◽  
Víctor Quezada ◽  
Yan Sepúlveda ◽  
...  

The need to sustainably produce raw materials encourages mining companies to develop and incorporate new economically and environmentally efficient processes. Therefore, there is a need to investigate the behavior and stabilization of hazardous elements present in effluents from metal recovery processes such as arsenic. This study evaluates the incorporation of an effluent solution from a copper smelter that is to be treated in a copper hydrometallurgical plant (heap leaching). The treatment is applied to recover compounds of interest such as copper, acid and water, in addition to confining impurities as stable residues in the leach residues. Here, we assess the capacity of the mineral to retain arsenic. To do this, a mixed solution of effluent and process solution was prepared, with a concentration of 1 g/L of arsenic. The solution was irrigated in leach columns loaded with a heap mineral with varying pH levels (0.8; 1.5 and 2) and solution potentials (510 and 540 mV). The concentrations of arsenic and iron in the solution and in the solid residues were measured to determine the capacity of the mineral to retain arsenic and how it was retained. The pH level plays an important role since, at a higher pH, the presence of arsenic and iron in the solution decreases, therefore increasing in the solid residue. Finally, a retention of 57% of arsenic is reached at pH 2. The characterization of the residues by scanning electron microscopy (SEM) confirms that arsenic is associated with Fe, S and O, forming ferric arsenates, while an X-Ray analysis identifies the arsenic compounds as crystalline scorodite.

2015 ◽  
Vol 1089 ◽  
pp. 147-151
Author(s):  
Hong Yan Sun ◽  
Xin Kong ◽  
Wei Sen ◽  
Gui Yang Liu ◽  
Zhong Zhou Yi

TiC powders have been prepared with titanium dioxide and charcoal powders as raw materials by vacuum carbothermal reduction technique. Meanwhile the as-prepared TiC powders were characterized by acid corrosion resistance test and oxidizability test. The results show as follows: the acid corrosion resistance of titanium carbide powders prepared at the optimum experiment conditions is better than that of industrial powders. It hardly dissolves in HCl, H2SO4, HNO3, HF, HClO4and aqua regia, and slightly dissolves in mixed solution HF+HNO3. The TiC powders are gradually oxidized at 352°C~917°C at air atmosphere and the product may be titanium dioxide and titanium oxides with lower valence. When the temperature rises to 546°C, a large quantity of titanium carbide powders are oxidized. And when the temperature rises to 688°C, besides the titanium carbide powders are oxidized to release heat, the free carbon is also oxidized and transformed into CO2gas to escape.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Vayia Xanthopoulou ◽  
Ioannis Iliopoulos ◽  
Ioannis Liritzis

The present study deals with the characterization of a ceramic assemblage from the Late Mycenaean (Late Helladic III) settlement of Kastrouli, at Desfina near Delphi, Central Greece using various analytical techniques. Kastrouli is located in a strategic position supervising the Mesokampos plateau and the entire peninsula and is related to other nearby coeval settlements. In total 40 ceramic sherds and 8 clay raw materials were analyzed through mineralogical, petrographic and microstructural techniques. Experimental briquettes (DS) made from clayey raw materials collected in the vicinity of Kastrouli, were fired under temperatures (900 and 1050 °C) in oxidizing conditions for comparison with the ancient ceramics. The petrographic analysis performed on thin sections prepared from the sherds has permitted the identification of six main fabric groups and a couple of loners. The aplastic inclusions recognized in all fabric groups but one confirmed the local provenance since they are related to the local geology. Fresh fractures of representative sherds were further examined under a scanning electron microscope (SEM/EDS) helping us to classify them into calcareous (CaO > 6%) and non-calcareous (CaO < 6%) samples (low and high calcium was noted in earlier pXRF data). Here, the ceramic sherds with broad calcium separation are explored on a one-to-one comparison on the basis of detailed mineralogical microstructure. Moreover, their microstructure was studied, aiming to estimate their vitrification stage. The mineralogy of all studied samples was determined by means of X-ray powder diffraction (XRPD), permitting us to test the validity of the firing temperatures revealed by the SEM analysis. The results obtained through the various analytical techniques employed are jointly assessed in order to reveal potters’ technological choices.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Giovanni Tafuro ◽  
Alessia Costantini ◽  
Giovanni Baratto ◽  
Stefano Francescato ◽  
Laura Busata ◽  
...  

As public attention on sustainability is increasing, the use of polysaccharides as rheological modifiers in skin-care products is becoming the first choice. Polysaccharide associations can be used to increase the spreading properties of products and to optimize their sensorial profile. Since the choice of natural raw materials for cosmetics is wide, instrumental methodologies are useful for formulators to easily characterize the materials and to create mixtures with specific applicative properties. In this work, we performed rheological and texture analyses on samples formulated with binary and ternary associations of polysaccharides to investigate their structural and mechanical features as a function of the concentration ratios. The rheological measurements were conducted under continuous and oscillatory flow conditions using a rotational rheometer. An immersion/de-immersion test conducted with a texture analyzer allowed us to measure some textural parameters. Sclerotium gum and iota-carrageenan imparted high viscosity, elasticity, and firmness in the system; carob gum and pectin influenced the viscoelastic properties and determined high adhesiveness and cohesiveness. The results indicated that these natural polymers combined in appropriate ratios can provide a wide range of different textures and that the use of these two complementary techniques represents a valid pre-screening tool for the formulation of green products.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


2019 ◽  
Vol 323 (2) ◽  
pp. 861-874
Author(s):  
Predrag Kuzmanović ◽  
Nataša Todorović ◽  
Jovana Nikolov ◽  
Jovana Knežević ◽  
Bojan Miljević

1992 ◽  
Vol 6 (4) ◽  
pp. 343-349 ◽  
Author(s):  
Yasuyuki Shibata ◽  
Masatoshi Morita

2013 ◽  
Vol 63 (4) ◽  
pp. 1327-1339 ◽  
Author(s):  
Atipan Saimmai ◽  
Satianpong Udomsilp ◽  
Suppasil Maneerat

2010 ◽  
Vol 105-106 ◽  
pp. 660-663 ◽  
Author(s):  
Yun Xia Chen ◽  
Xing Yong Gu ◽  
Chun’e Cao ◽  
Yang Huang

ZrOCl2•6H2O and Y(NO3)3 were used as raw materials to fabricated Y2O3 stabilized ZrO2(YSZ) nanopowders by hydrothermal method. The addition of Y2O3, different precipitants, different hydrothermal temperatures and times were studied. XRD and TEM were employed to characterize phase compositions, grain sizes and lattice parameters of the as-prepared YSZ nanopowders. The results show that less than 10nm and well crystallized cubic YSZ were obtained under a certain experimental conditions. Different precipitants affect the formation of precursors and final products. The addition of NaOH is benefit to the growth of YSZ crystals with the max grain size and the minimum lattice distortion among the three kinds of precipitants. Amorphous YSZ powders are obtained at lower hydrothermal temperature of 150°Cfor longer treating time of 6h. However, when the hydrothermal temperature is elevated at 180°C, well crystallized YSZ powders are prepared only treated for 2h.


Sign in / Sign up

Export Citation Format

Share Document