scholarly journals Comparison of Extraction Ability between a Mixture of Alamine 336/Aliquat 336 and D2EHPA and Ionic Liquid ALi-D2 from Weak Hydrochloric Acid Solution

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1678
Author(s):  
Viet Nhan Hoa Nguyen ◽  
Minh Nhan Le ◽  
Man Seung Lee

The development of extraction systems to improve the extraction efficiency of metals using commercial extractants and ionic liquids is of importance. The extraction behavior of Co(II) between mixture of Alamine 336/Aliquat 336 and D2EHPA and synthesized ionic liquid ALi-D2 was compared in this work. Some factors, such as equilibrium pH, properties of the extractants, and concentration of components in the mixture had a remarkable effect on the extraction of Co(II). The interactions occurring in the mixtures as well as the change in solution pH were analyzed. Co(II) was completely extracted by ionic liquid when equilibrium pH was higher than 6.5, while it was difficult to extract Co(II) by employing the mixture of D2EHPA and Alamine 336/Aliquat 336. The formation of ionic liquid in the mixture of D2EHPA and Aliquat 336 was verified through FT-IR spectra. In addition, the competition extraction of hydrogen ion and Co(II) by ionic liquid ALi-D2 was explained. Among the three kinds of extractants, the ionic liquid showed the best extraction efficiency for Co(II) and pH control from weak acidic solutions. The present study provides valuable information on the extraction behavior of metal ion by the mixtures of commercial extractants, and thus can give some light on the development of metal extraction systems.

2020 ◽  
Vol 9 (3) ◽  
pp. 1320-1332

Calixarenes are preferable for metal extraction because of the easy synthesis of a great number of derivatives, which allows comparing the impact of cavity size, conformation, functional groups, and other factors on the extraction behavior, and the flexibility to design a proper ligand to recognize a metal ion selectively. In this work, theoretically, it has been discussed on the specific Calix[n] and related cation in point of density and electrical potential via electron densities & cycle-voltammetry studies.


2020 ◽  

<p>This work analyzes the extraction behavior of transition heavy metal Zinc and other metal ions such as Copper, and Cadmium from hydrochloride aqueous solution in the absence of chelating agents by using a novel class of hydrophobic ionic liquids. Ionic liquid for this study was synthesized based on 1-(n-alkyl)-3-methylimidazolium cations and hexafluorophosphate anions followed by the metathesis route at room temperature were evaluated. The advantages of using these ionic liquids include their simple synthesis and sustainability. Which makes them “Greener and Simpler” compared to other solvents used for metal extraction. The experimental results show that ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate, [BMPSM][PF6] entirely removed of Zinc (extraction percentage 94.4%) and other Copper and Cadmium heavy metals from the aqueous solutions. Based on the results, the use of ionic liquids for selected heavy metal ions as a substitute to the traditional extraction agents in liquid/liquid extraction of heavy metal ions shows considerable potential and is quite promising and promoting for further extraction.</p>


2021 ◽  
pp. 2004490
Author(s):  
Wenjun Zhou ◽  
Meng Zhang ◽  
Xiangyue Kong ◽  
Weiwei Huang ◽  
Qichun Zhang
Keyword(s):  

Author(s):  
Chi M. Phan ◽  
Son A. Hoang ◽  
Son H. Vu ◽  
Hoang M. Nguyen ◽  
Cuong V. Nguyen ◽  
...  

Abstract Background Cashew nut shell is a by-product of cashew (Anacardium occidentale) production, which is abundant in many developing countries. Cashew nut shell liquor (CNSL) contains a functional chemical, cardanol, which can be converted into a hydroxyoxime. The hydroxyoximes are expensive reagents for metal extraction. Methods CNSL-based oxime was synthesized and used to extract Ni, Co, and Mn from aqueous solutions. The extraction potential was compared against a commercial extractant (LIX 860N). Results All metals were successfully extracted with pH0.5 between 4 and 6. The loaded organic phase was subsequently stripped with an acidic solution. The extraction efficiency and pH0.5 of the CNSL-based extractant were similar to a commercial phenol-oxime extractant. The metals were stripped from the loaded organic phase with a recovery rate of 95% at a pH of 1. Conclusions Cashew-based cardanol can be used to economically produce an oxime in a simple process. The naturally-based oxime has the economic potential to sustainably recover valuable metals from spent lithium-ion batteries. Graphic abstract


RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 26668-26678 ◽  
Author(s):  
Shivani Sharma ◽  
Chia-Ming Wu ◽  
Ranjit T. Koodali ◽  
N. Rajesh

Aliquat-336@SBA-15 blend adsorbent effectively adsorbs Pd from a spent catalyst.


Author(s):  
Himangshu Mondal ◽  
Kanti Kumar Athankar ◽  
Kailas L. Wasewar

Abstract Biomass is an attractive target in process development for the emerging renewable resources based bio-refinery industry. Due to the ample range of application of acrylic acid, its production through bio-route received more awareness in scientific fraternity. In this view, an attempted was made to study the reactive extraction of acrylic acid with aliquat 336 in rice bran oil. Moreover, Box-Behnken matrix was employed to corroborate the effects of process variables viz. concentration of acrylic acid [CAA]aq, concentration of aliquat 336 [CR4N+Cl], and temperature on the extraction efficiency (η%). In physical extraction, average extraction efficiency was found in the order as: 43.55 > 35.36 > 29.14 at 303 K, 323 K, and 343 K respectively in rice bran oil. The correlation coefficient, R2 = 0.988 % indicates the appropriateness of proposed model to predict the extraction efficiency in terms of independent variables, and the predicted values were found in close agreement with that of experimental results. Further, R2(Pred) = 0.806 is in reasonable agreement with the R2(Adj) = 0.972. The optimum conditions for extraction of acrylic acid using aliquat 336 as an extractant in rice bran oil are [CAA]aq = 0.0.5 (mol/kg); [CR4N+Cl] = 1.98 (mol/kg); temperature = 323 K and the model predicted extraction efficiency 77.5 % was found to be an excellent fit with the experimental value 75 %. Further, number of theoretical stages was found to be 3 and S/F ratio 0.247.


2021 ◽  
Author(s):  
Bernardo Patella ◽  
Robert Daly ◽  
Ian Seymour ◽  
Pierre Lovera ◽  
James Rohan ◽  
...  

In electroanalysis, solution pH is a critical parameter that often needs to be adjusted and controlled for the detection of particular analytes. This is most commonly performed by the addition of chemicals, such as strong acids or bases. Electrochemical in-situ pH control offers the possibility for the local adjustment of pH at the point of detection, without additional reagents. FEA simulations have been performed to guide experimental design for both electroanalysis and in-situ control of solution pH. No previous model exists that describes the generation of protons at an interdigitated electrode array in buffered solution with one comb acting as a protonator, and the other as the sensor. In this work, FEA models are developed to provide insight into the optimum conditions necessary for electrochemical pH control. The magnitude of applied galvanostatic current has a direct relation to the flux of protons generated and subsequent change in pH. Increasing the separation between the electrodes increases the time taken for protons to diffuse across the gap. The final pH achieved at both, protonators and sensor electrodes, after 1 second, was shown to be largely uninfluenced by the initial pH of the solution. The impact of buffer concentration was modelled and investigated. In practice, the pH at the electrode surface was probed by means of cyclic voltammetry, i.e., by cycling a gold electrode in solution and identifying the potential of the gold oxide reduction peak. A pH indicator, methyl red, was used to visualise the solution pH change at the electrodes, comparing well with the model’s prediction


2018 ◽  
Vol 24 (4) ◽  
pp. 387-397 ◽  
Author(s):  
Yi Liu ◽  
Li Chen ◽  
Jun Zhou ◽  
Zongcheng Yan

Ionic liquids-based aqueous two-phase extraction (ILs-ATPE) offers an alternative approach to the extraction of tetracycline (TC) through their partitioning between two phases. Single-stage and multi-stage strategies have been evaluated and compared for the purification of TC using ATPE composed of 1-butyl-3-methylimidazolium halide ([Bmim]X(X=Cl,Br)) and K2HPO4. The influence factors on single-stage extraction behavior of TC were optimized systematically, including the pH value, tie line length, and volume ratio. The optimal extraction efficiency of TC could reach above 95% when the volume ratio is higher than 1.5 and the tie line length is 30.52%. The multi-stage ATPE was also investigated by simulating a three-stage crosscurrent operation in test tubes. According to the TC isotherm curve and respective McCabe?Thiele diagrams, a predicted optimized scheme of the countercurrent multi-stage ATPE was determined. TC can be purified in the IL-rich top phase with a final extraction efficiency of 99% and a final TC concentration of 0.25 mg/mL, if a three- -stage [Bmim]Cl-K2HPO4 ATPE with volume ratio of 0.5 and tie line length of 30.52% was employed. Thus, the multi-stage extraction with small volume ratio is necessary to achieve a higher recovery yield, resulting in the reduction of the IL consumption.


Sign in / Sign up

Export Citation Format

Share Document