scholarly journals Experimental Investigation and Multi-Response Optimization of Machinability of AA5005H34 Using Composite Desirability Coupled with PCA

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Mohsin Iqbal Qazi ◽  
Muhammad Abas ◽  
Razaullah Khan ◽  
Waqas Saleem ◽  
Catalin Iulian Pruncu ◽  
...  

Minimum quantity lubricant (MQL) is an advanced technique in machining to achieve sustainability, productivity, higher precision, economic benefits, and a reduction in carbon footprints. The present research work aims to investigate the effect of the cutting process parameters of the end milling of AA5005H34 material under dry and MQL cutting environments. The key performance indicators of machining include the surface roughness profile, the material removal rate, and tool wear. Surface roughness parameters are measured with the help of the Mitutoyo surface roughness tester, and the cutting tool wear is measured according to the ISO 8688-2:1989 standard using a scanning electron microscope (SEM). Sixteen experiments are designed based on the Taguchi orthogonal array mixture design. Single responses are optimized based on signal to noise ratios, while for multi-response optimization composite desirability function coupled with principal component analysis is applied. Analysis of variance (ANOVA) results revealed that the feed rate followed by spindle speed, axial depth of the cut, width of the cut, and cutting environment are the most significant factors contributing to the surface roughness profile, material removal rate, and tool wear. The optimized parameters are obtained as cutting speed of 3000 rev/min, feed rate of 350 mm/min, axial depth of cut of 2 mm, and width of cut of 6 mm under an MQL environment.

2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2021 ◽  
Author(s):  
Dragan Rodic ◽  
Marin Gostimirovic ◽  
Milenko Sekulic ◽  
Borislav Savkovic ◽  
Branko Strbac

Abstract It is well known that electrical discharge machining can be used in the processing of nonconductive materials. In order to improve the efficiency of machining modern engineering materials, existing electrical discharge machines are constantly being researched and improved or developed. The current machining of non-conductive materials is limited due to the relatively low material removal rate and high surface roughness. A possible technological improvement of electrical discharge machining can be achieved by innovations of existing processes. In this paper, a new approach for machining zirconium oxide is presented. It combines electrical discharge machining with assisting electrode and powder-mixed dielectric. The assisting electrode is used to enable electrical discharge machining of nonconductive material, while the powder-mixed dielectric is used to increase the material removal rate, reduce surface roughness, and decrease relative tool wear. The response surface method was used to generate classical mathematical models, analyzing the output performances of surface roughness, material removal rate and relative tool wear. Verification of the obtained models was performed based on a set of new experimental data. By combining these latest techniques, positive effects on machining performances are obtained. It was found that the surface roughness was reduced by 18%, the metal removal rate was increased by about 12% and the relative tool wear was reduced by up to 6% compared to electrical discharge machining with supported electrode without powder.


2013 ◽  
Vol 199 ◽  
pp. 615-620
Author(s):  
Adam Barylski ◽  
Mariusz Deja

New tools for flat grinding of ceramics (Al2O3) are presented in the paper. Electroplated CBN tools (B64 and B107) were used in a modified single-disc lapping machine configuration. The results from experiments, such as the material removal rate and surface roughness parameters are presented and analyzed. Numerical simulations, based on the model for the shape error and tool wear estimation in machining with flat lapping kinematics, are also presented. The tool life of electroplated tools can be extended by choosing appropriate parameter K related to the process kinematics.


2014 ◽  
Vol 941-944 ◽  
pp. 1973-1976
Author(s):  
B. Geetha ◽  
K. Ganesan

An investigation was carried out to find out the influence of process parameters on surface roughness (SR) and material removal rate (MRR) in electric discharge machine of Al-7%Si-4%Mg with 20% of red mud Metal Matrix Composites since electric discharge machining is a thermo-electric machining process, an electronic die sinking electric discharge machine was used to drill holes in the composite work piece, copper is used as tool material. Experiment was carried out to find surface roughness, material removal rate and tool wear rate by varying the peak current, flushing pressure of dielectric fluid and pulse on time. It was found that the surface roughness of composite metal increases with the increase peak current ,pulse on time and flushing pressure due larger and deeper craters on the drilled surface. It was also found that there was increase in metal removal rate with the increase in peak current and flushing pressure and slightly decreases with the increase in pulse on time due carbon deposits on the electrodes. Experimental analysis is carried using Taguchi’s Design of Experiment method with various parameters like peak current, flushing pressure of dielectric fluid and pulse on time to identify the key factors that influence the surface roughness, material removal rate and tool wear rate. It was found that the peak current was the most significant parameter that influences surface roughness, material removal rate and tool wear rate. The Taguchi experiments results confirm the actual results obtained from the numerical calculation.


2017 ◽  
Vol 24 (02) ◽  
pp. 1750018 ◽  
Author(s):  
SAEED DANESHMAND ◽  
BEHNAM MASOUDI ◽  
VAHID MONFARED

Nowadays, composites are used in different parts of industries and it is one of the most important subjects. The most widely used reinforcements in metal matrix composites are Al2O3 and SiC fibers and particles which may be used in cutting-edge functional and structural applications of aerospace, defense, and automobile industries. Depending on the type of powder used, composite materials are difficult to machine by conventional cutting tools and methods. The most appropriate way for machining of these composites is electro discharge. For the reason of improving the surface quality, tool wear rate and material removal rate and reducing the cracks on the surface, Al2O3 powder was used. In this study, the effect of input parameters of EDM such as voltage, pulse current, pulse on-time and pulse off-time on output parameters like material removal rate, tool wear rate and surface roughness in both conditions of the rotary tool with powder mixed dielectric EDM and the stationary tool excluding powder mixed dielectric were investigated. The critical parameters were identified by variance analysis, while the optimum machining parameter settings were achieved via Taguchi method. Results show that using of powder mixed dielectric and rotary tool reduce the tool wear rate, surface roughness and the cracks on the surface significantly. It is found also that using of powder mixed dielectric and rotary tool improve the material removal rate due to improved flushing action and sparking efficiency. The analysis of variance showed that the pulse current and pulse on-time affected highly the MRR, TWR, surface roughness and surface cracks.


Author(s):  
Mostafa A. Abdullah  , Ahmed B. Abdulwahhab   ,   Atheer R.

In the curents study aimed to assess the effects of cutting conditions  (spindle speed, feed rate, tool diameter) parameters as input impact on material removal rate (MRR) and surface roughness (Ra) as output of steel (AISI 1015). A number of drilling experiments were conducted using the L9 orthogonal array on conventional drilling machine with use feed rate (0.038,0.076,0.203) mm/rev and spindle speed (132,550,930) rpm and tool diameter (11,15,20) mm HSS twist drills under dry cutting conditions. Analysis of variance (ANOVA) was employed to determine the most significant control factors affecting on surface roughness and MRR. The result shown the tool diameter the important factor effect with (64.08%) and (76.12%) on MRR and surface roughness respectively.


2021 ◽  
Vol 23 (11) ◽  
pp. 228-235
Author(s):  
Sunil Kumar ◽  
◽  
P.N . Rao ◽  

The purpose of this experimental research is to compare the effectiveness of using Taguchi approaches for multi-response optimization of process parameters in Vertical Milling Machine of EN 31 Material intending to minimize surface roughness and tool wear rate while maximizing material removal rate to improve the productivity of the process with coated carbide insert. Taguchi L9 and Annova have been applied for experimental design and analysis. This experiment shows that feed and depth of cut are factors that are important for tool wear, Depth of cut is a notable factor for Material Removal Rate and feed is the most notable factor for surface roughness. Spindle speed has little effect on tool wear rate, surface roughness, and material removal rate. Mathematical models for three response parameters i.e. tool wear rate, surface roughness, and material removal rate were obtained by regression analysis


This study uses Taguchi methodology and Gray Relational Analysis approach to explore the optimization of face milling process parameters for Al 6061 T6 alloy.Surface Roughness (Ra), Material Removal Rate (MRR) has been identified as the objective of performance and productivity.The tests were performed by selecting cutting speed (mm / min), feed rate (mm / rev) and cutting depth (mm) at three settings on the basis of Taguchi's L9 orthogonal series.The grey relational approach was being used to establish a multiobjective relationship between both the parameters of machining and the characteristics of results. To find the optimum values of parameters in the milling operation, the response list and plots are used and found to be Vc2-f1-d3. To order to justify the optimum results, the confirmation tests are performed.The machining process parameters for milling were thus optimized in this research to achieve the combined goals such as low surface roughness and high material removal rate on Aluminum 6061 t6.It was concluded that depth of cut is the most influencing parameter followed by feed rate and cutting velocity.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3749 ◽  
Author(s):  
Adel T. Abbas ◽  
Neeraj Sharma ◽  
Saqib Anwar ◽  
Faraz H. Hashmi ◽  
Muhammad Jamil ◽  
...  

Nowadays, titanium alloys are achieving a significant interest in the field of aerospace, biomedical, automobile industries especially due to their extremely high strength to weight ratio, corrosive resistance, and ability to withstand higher temperatures. However, titanium alloys are well known for their higher chemical reactive and low thermal conductive nature which, in turn, makes it more difficult to machine especially at high cutting speeds. Hence, optimization of high-speed machining responses of Ti–6Al–4V has been investigated in the present study using a hybrid approach of multi-objective optimization based on ratio analysis (MOORA) integrated with regression and particle swarm approach (PSO). This optimization approach is employed to offer a balance between achieving better surface quality with maintaining an acceptable material removal rate level. The position of global best suggested by the hybrid optimization approach was: Cutting speed 194 m/min, depth of cut of 0.1 mm, feed rate of 0.15 mm/rev, and cutting length of 120 mm. It should be stated that this solution strikes a balance between achieving lower surface roughness in terms of Ra and Rq, with reaching the highest possible material removal rate. Finally, an investigation of the tool wear mechanisms for three studied cases (i.e., surface roughness based, productivity-based, optimized case) is presented to discuss the effectiveness of each scenario from the tool wear perspective.


Sign in / Sign up

Export Citation Format

Share Document