scholarly journals Analysis of the Visual Appearance of AISI 430 Ferritic Stainless Steel Flat Sheets Manufactured by Cool Rolling and Bright Annealing

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1058
Author(s):  
Juan M. González-Leal ◽  
Enrique Gallero ◽  
Eduardo Blanco ◽  
Milagrosa Ramírez del Solar ◽  
Andrés Nuñez ◽  
...  

This article reports on the relation between the surface topography and the optical reflectance, both total and diffuse, of different samples of AISI 430 ferritic stainless steel. Gaussian filters with different cutoff wavelengths were applied to the height maps of the surface topography of the samples, to separate the different scales of surface roughness involved in optical scattering in the visible range of the spectrum. Significant anisotropy, related to the rolling process, was found in the topography. An effective roughness slope parameter was defined from the dependence of the ratio between the root mean square height and the autocorrelation length on the cutoff wavelength. This roughness slope demonstrated an exceptionally good linear relationship with CIE 1931 luminance, which was calculated from the diffuse reflection spectra. The color uniformity of the samples was analyzed based on their CIE L*a*b* coordinates under daylight and LED illumination. The results confirmed the strong influence of manufacturing process on the surface characteristics of AISI 430 ferritic stainless steel sheet products with a bright finish.

2003 ◽  
Vol 8 (3) ◽  
pp. 184-193 ◽  
Author(s):  
V. V. Satyanarayana ◽  
G. Madhusudhan Reddy ◽  
T. Mohandas ◽  
G. Venkata Rao

2005 ◽  
Vol 473-474 ◽  
pp. 231-236 ◽  
Author(s):  
István Mészáros

Magnetic Barkhausen noise measurement (MBN) is a relatively new non-destructive detection technique. Its working principle is based on Barkhausen discontinuities or noise when a ferromagnetic material is subjected to a varying magnetic field. MBN is being used to characterise the stress state of a ferritic stainless steel (AISI 430). Other magnetic parameters such as saturation induction (BMax), remnant induction (BR), coercive field (HC) and maximal relative permeability (PMax) derived from the hysteresis loop have also been used to support the results achieved using MBN. Microstructural changes due to cold working and heat treatments were characterized by the applied magnetic measurements. The MBN technique was proved to be a useful non-destructive and quantitative method for microstuctural investigation of the investigated ferritic stainless steel.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 140 ◽  
Author(s):  
W. K. Chan ◽  
C. T. Kwok ◽  
K. H. Lo

In the present study, the feasibility of laser surface melting (LSM) of AISI 430 ferritic stainless steel to minimize hydrogen embrittlement (HE) was investigated. LSM of AISI 430 steel was successfully achieved by a 2.3-kW high power diode laser (HPDL) with scanning speeds of 60 mm/s and 80 mm/s (the samples are designated as V60 and V80, respectively) at a power of 2 kW. To investigate the HE effect on the AISI 430 steel without and with LSM, hydrogen was introduced into specimens by cathodic charging in 0.1 M NaOH solution under galvanostatic conditions at a current density of 30 mA/cm2 and 25 °C. Detail microstructural analysis was performed and the correlation of microstructure with HE was evaluated. By electron backscatter diffraction (EBSD) analysis, the austenite contents for the laser-surface melted specimens V60 and V80 are found to be 0.6 and 1.9 wt%, respectively. The amount of retained austenite in LSM specimens was reduced with lower laser scanning speed. The surface microhardness of the laser-surface melted AISI 430 steel (~280 HV0.2) is found to be increased by 56% as compared with that of the substrate (~180 HV0.2) because of the presence of martensite. The degree of embrittlement caused by hydrogen for the charged and non-charged AISI 430 steel was obtained using slow-strain-rate tensile (SSRT) test in air at a strain rate of 3 × 10−5 s−1. After hydrogen pre-charging, the ductility of as-received AISI 430 steel was reduced from 0.44 to 0.25 while the laser-surface melted AISI 430 steel showed similar tensile properties as the as-received one. After LSM, the value of HE susceptibility Iδ decreases from 43.2% to 38.9% and 38.2% for V60 and V80, respectively, due to the presence of martensite.


Sign in / Sign up

Export Citation Format

Share Document