scholarly journals Friction Stir Spot Butt Welding of Dissimilar S45C Steel and 6061-T6 Aluminum Alloy

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1252
Author(s):  
Kun Gao ◽  
Shengwei Zhang ◽  
Mounarik Mondal ◽  
Soumyabrata Basak ◽  
Sung-Tae Hong ◽  
...  

Friction stir spot welding (FSSW) of dissimilar S45C steel and 6061-T6 aluminum alloy in a butt configuration is experimentally investigated. Butt spot welding is performed using a convex scrolled shoulder tool at different tool rotational speeds. FSSW butt joints are successfully fabricated by offsetting the tool to the steel side. The microstructures of the joints fabricated at three different tool rotational speeds are characterized using scanning electron microscopy and energy dispersive spectrometry. Microstructural analysis shows the presence of intermetallic compounds (IMCs) along the steel/aluminum interface. The thickness of the IMC layer and the tensile strength of the joint increase with increasing the tool rotational speed. The results of tensile tests and microstructural analysis show that the joint performance is closely related to the IMCs at the joint interface.

2021 ◽  
pp. 009524432110015
Author(s):  
Mustafa Kemal Bilici

In this study, two different polymer materials were used. In the joints made with friction stir spot welding, firstly (PP/PP and HDPE/HDPE) and then different materials (PP/HDPE, HDPE/PP) joining processes were carried. The influence of the tool rotational speed and the stirring time on joint formation and weld strength were determined. The temperature of the liquid welding materials varies according to the materials to be combined. High weld strengths were obtained at the friction stir spot welding of similar plastic sheets. The highest weld strengths were obtained in PP-PP welds. Low weld strengths were obtained at the friction stir spot welding of dissimilar plastic sheets because of immiscible and incompatible blends formed during the welding operation. The lowest weld strengths were obtained in PP-HDPE welds. The chemical composition and the phase morphology of the blends, the mechanical scission occurrence and the welding residual stresses determine the strength of the welds.


Author(s):  
A. Tajiri ◽  
Y. Uematsu ◽  
T. Kakiuchi ◽  
Y. Suzuki

A356-T6 cast aluminum alloy is a light weight structural material, but fatigue crack initiates and propagates from a casting defect leading to final fracture. Thus it is important to eliminate casting defects. In this study, friction stir processing (FSP) was applied to A356-T6, in which rotating tool with probe and shoulder was plunged into the material and travels along the longitudinal direction to induce severe plastic deformation, resulting in the modification of microstructure. Two different processing conditions with low and high tool rotational speeds were tried and subsequently fully reversed fatigue tests were performed to investigate the effect of processing conditions on the crack initiation and propagation behavior. The fatigue strengths were successfully improved by both conditions due to the elimination of casting defects. But the lower tool rotational speed could further improve fatigue strength than the higher speed. EBSD analyses revealed that the higher tool rotational speed resulted in the severer texture having detrimental effects on fatigue crack initiation and propagation resistances.


Author(s):  
Gaurav Kumar ◽  
◽  
Rajeev Kumar ◽  
Ratnesh Kumar

In this study, experiments were performed to analyze the fracture surface and microstructural behavior of friction stir welded (FSW) AA5082-AA7075butt joints. Three samples at varying speeds and constant feed were prepared to identify optimum tool speed to produce FSW AA5082-AA7075 butt joints having maximum tensile strength and fatigue life. A scanning electron microscope (SEM) was used to analyze microstructure and fracture surfaces. The samples prepared exhibited a considerable difference in their fatigue life and tensile strength. Microstructural analysis showed the refinement of grains present in the stir zone (SZ), also known as the weld nugget, and thermo-mechanically affected zone (TMAZ). The study of the fracture surface showed that the mode of failure was ductile in nature


2017 ◽  
Vol 71 (1) ◽  
pp. 139-145 ◽  
Author(s):  
Yao Shi ◽  
Yumei Yue ◽  
Liguo Zhang ◽  
Shude Ji ◽  
Yue Wang

2015 ◽  
Vol 63 (2) ◽  
pp. 475-478
Author(s):  
I. Küçükrendeci

Abstract In the study, the mechanical and microstructural properties of friction stir welded EN AW-6060 Aluminum Alloy plates were investigated. The friction stir welding (FSW) was conducted at tool rotational speeds of 900, 1250, and 1500 rpm and at welding speeds of 100, 150 and 180 mm/min. The effect of the tool rotational and welding speeds such properties was studied. The mechanical properties of the joints were evaluated by means of micro-hardness (HV) and tensile tests at room temperature. The tensile properties of the friction stir welded tensile specimens depend significantly on both the tool rotational and welding speeds. The microstructural evolution of the weld zone was analysed by optical observations of the weld zones


Sign in / Sign up

Export Citation Format

Share Document