scholarly journals Optimization of Conditions for Processing of Lead–Zinc Ores Enrichment Tailings of East Kazakhstan

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1802
Author(s):  
Nazym Seksenova ◽  
Rudolf Bykov ◽  
Sergey Mamyachenkov ◽  
Gulzhan Daumova ◽  
Malika Kozhakanova

This article presents the results of studies of a low-waste technology for processing enrichment tailings using a combined enrichment–hydrometallurgical method. After washing the enrichment tailings from harmful products and reducing their size, multi-stage flotation of the crushed material of the enrichment tailings was carried out. The use of a new reagent in the flotation process was studied in order to ensure the maximum recovery of the main valuable components from the enrichment tailings. A new collector of Aero 7249 (Shenyang Florrea Chemicals Co., Ltd., Shenyang, China) type was used for the flotation. The recovery of valuable components was as follows: Cu, 6.78%; Zn, 91.69%; Pb, 80.81%; Au, 95.90%; Ag, 82.50%; Fe, 78.78%. Tailings of the flotation were re-enriched using a fatty acid collector (sodium oleate). Additional (reverse) flotation resulted in obtaining a product corresponding to the composition of building sand in terms of the content of valuable components of the waste rock. The studies of the conditions for processing the enrichment tailings of lead–zinc ore indicate the possibility of its optimization in order to maximize the involvement of waste in the production.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdolrahim Foroutan ◽  
Majid Abbas Zadeh Haji Abadi ◽  
Yaser Kianinia ◽  
Mahdi Ghadiri

AbstractCollector type and pulp pH play an important role in the lead–zinc ore flotation process. In the current study, the effect of pulp pH and the collector type parameters on the galena and sphalerite flotation from a complex lead–zinc–iron ore was investigated. The ethyl xanthate and Aero 3418 collectors were used for lead flotation and Aero 3477 and amyl xanthate for zinc flotation. It was found that maximum lead grade could be achieved by using Aero 3418 as collector at pH 8. Also, iron and zinc recoveries and grades were increased in the lead concentrate at lower pH which caused zinc recovery reduction in the zinc concentrate and decrease the lead grade concentrate. Furthermore, the results showed that the maximum zinc grade and recovery of 42.9% and 76.7% were achieved at pH 6 in the presence of Aero 3477 as collector. For both collectors at pH 5, Zinc recovery was increased around 2–3%; however, the iron recovery was also increased at this pH which reduced the zinc concentrate quality. Finally, pH 8 and pH 6 were selected as optimum pH values for lead and zinc flotation circuits, respectively.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 675
Author(s):  
Neymayer Pereira Lima ◽  
Klaydison Silva ◽  
Thiago Souza ◽  
Lev Filippov

The flotation has been successfully applied to process the iron ore for the particle size (Ps) from 10 µm up to 150 µm. The presence of the slimes (Ps < 10 µm) is harmful on the reverse flotation of quartz, so they are usually prior removed by hydrocyclones. The main effects of the presence of slimes on the flotation are related to the increase on reagents consumption, the froth stability, and decrease on the selectivity. The lower floatability of coarse quartz particles (+74 µm) combined with the presence of slimes, even in small quantities, drastically affect the flotation response. This paper shows a study of characterization of a typical iron ore slime, aiming to create a better understanding of its role on the concentration by flotation. The main characteristics of typical slimes from the Iron Ore Quadrangle in Brazil are the presence of almost 70% of hematite, 25% of quartz, and 5% of kaolinite, as the main silicates gangue minerals. Furthermore, the particle size distribution revealed that 80% of the hematite and the kaolinite are below 20 µm. The affinity between the ultrafine kaolinite of the slimes with the corn starch is harmful to the reverse flotation of quartz, as the starch has an important depressing action over the hematite. The presence of 20% of hematite −20 µm decreased the recovery to the froth of quartz + 74 µm from 97% to 62%, where the slimes coating seems to be the main responsible.


1950 ◽  
Vol 28f (3) ◽  
pp. 51-61 ◽  
Author(s):  
A. S. Weatherburn ◽  
G. R. F. Rose ◽  
C. H. Bayley

The sorption of the sodium soaps of lauric, myristic, palmitic, stearic, and oleic acids from aqueous solutions by various textile fibers has been measured. The sorption of both the fatty acid and alkali components of the soaps by dull acetate rayon and dull nylon fibers was essentially the same as that shown by the corresponding bright (undelustered) fibers, while dull viscose rayon sorbed considerably more fatty acid than the bright fiber. In general, the order of increasing sorption was: cotton, nylon, acetate, bright viscose, dull viscose, and wool. Of the saturated soaps, the maximum sorption of fatty acid by all fibers was obtained with sodium myristate, while the alkali sorptions were approximately the same for myristate, palmitate, and stearate, all of which were higher than for laurate. The sorption from sodium oleate solutions corresponded approximately to that from the C14–C16 saturated soaps. Preferential sorption of alkali by cotton and viscose rayon was observed for all soaps, while acetate rayon, nylon, and wool showed preferential sorption of fatty acid with the lower molecular weight soaps and preferential sorption of alkali with the higher soaps. Suppression of hydrolysis by the addition of excess free alkali resulted in a reduction in fatty acid sorption in every case, and shifted the maximum from the C14 to the C16 soap. It is concluded that the sorption of soap by textile fibers is a complex process involving the more or less independent sorption of neutral soap, hydrolytic fatty acid (or acid soap), and hydrolytic alkali.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 698
Author(s):  
Wenxiang Chen ◽  
Feng Zhou ◽  
Hongquan Wang ◽  
Sen Zhou ◽  
Chunjie Yan

The reserve of rare-earth element-bearing phosphorite ores in Guizhou province in western China is huge. Increased demand for the different products manufactured from rare-earth elements has resulted in an extreme need for reasonable and comprehensive extraction of rare-earth elements. An improved understanding of rare-earth element occurrence states in single minerals of ores is important for their further processing. In this paper, rare-earth element contents were analyzed by inductively coupled plasma (ICP), and the occurrence states in single minerals were further investigated through SEM-EDS and focused ion beam-scanning electron microscope (FIB-SEM) methods. The results indicate that rare-earth element contents of apatite are far more than that of dolomite. No independent mineral of rare-earth elements exists for the studied sample. Rare-earth elements are present in the form of ions in the lattices of apatite. Based on the analysis of occurrence states and properties in single minerals, the distribution of rare-earth elements in the flotation process was investigated by reverse flotation technology. It shows that rare-earth elements are mainly concentrated in apatite concentrate. Under the optimized conditions, the P2O5 grade increases from 11.36% in the raw ore to 26.04% in the concentrate, and the recovery is 81.92%, while the total rare-earth oxide grade increases from 0.09% to 0.21% with the recovery of 80.01%, which is similar to P2O5 recovery. This study presents the feasibility of extracting rare-earth elements from rare-earth element-bearing phosphorite ores through the flotation of apatite.


2013 ◽  
Vol 699 ◽  
pp. 119-125
Author(s):  
Hui Mei Yu ◽  
Hua Jun Wang ◽  
Ai Fei Yi

The composition of catering waste oil is similar to that of traditional materials for the preparation of fatty acid collectors, which makes it possible to change catering waste oil into fatty acid collector applied to ore flotation. The collectors which come from catering waste oil are detected by FTIR and GC-MS analyses. The FTIR date shows that collectors contains lively carboxyl functional groups and The GC-MS date reveals that those carboxyl functional groups exist in single unsaturated fatty acid and three unsaturated fatty acid. The collectors can be applied to iron ore reverse flotation, apatite flotation, and fluorite flotation. It has better flotation experiment results than the traditional collector that using in field production.


2020 ◽  
pp. 33-39
Author(s):  
S. S. Plyasovitsa ◽  
◽  
O. A. Kravtsova ◽  
N. V. Ivanova ◽  
I. Yu. Semenov ◽  
...  

The authors carried out a mineralogical study and substantiated a concentration process developed for the lead-zinc ores of the Pavlovsk deposit. The concentration of the valuable component in each type of concentrate is determined by the amount of pyrite contained in the ore. It was established that the main loss of lead with flotation tailings is associated with oxidized phases, which are mainly found in fine material. Lead sulphides account for 30% of the entire waste tailings. Using the results of the mineralogical study, a flotation process was developed that involves a staged separation of commercial lead and zinc concentrates, as well as waste tailings. The obtained zinc concentrate has a consistently high quality of 57–58% with an 85–90% recovery. The metal concentration in the lead concentrate 1 is 45%, with the recovery being 43%. On the basis of the experimental results, the authors propose to use an X-ray radiometric separation method for coarse ore, which will help reduce the amount of incoming ore by 30% while minimizing the loss of lead and zinc.


2012 ◽  
Vol 538-541 ◽  
pp. 2354-2357 ◽  
Author(s):  
Xiao Jun Jiang ◽  
Yun Jin Wang ◽  
Hong Bo Xu ◽  
Jian Wang

This investigation involves the effects of non-ionic surfactant materials on the industrial sodium oleate, sodium naphthenate and their mixtures at different temperatures by the surface tension methods. The effects on the critical micelle concentration (CMC) of sodium oleate were assessed by the Toween 80(T-80) presence, polyethylene glycol, polyether and other non-ionic surfactant. T-80 was proved more effective than other non-surfactant in increasing the sodium oleate CMC at same concentration. Using the optimal composition of sodium fatty acid and the surfactant can reduce the temperature of separation hematite from 43°C to 23°C, achieve the purpose of low carbon and energy saving.


2008 ◽  
Vol 18 (2) ◽  
pp. 449-453 ◽  
Author(s):  
Ying-yong GE ◽  
Shun-peng GAN ◽  
Xiao-bo ZENG ◽  
Yong-fu YU

2011 ◽  
Vol 201-203 ◽  
pp. 2749-2752
Author(s):  
Shu Xian Liu ◽  
Li Li Shen ◽  
Jin Xia Zhang

The grade of the crude hematite-limonite ore is 39.79%. The main metallic minerals are hematite-limonite. Hematite has disseminated structure distributed in the gangue. Limonite was inlayed as stars in hematite. Due to their fine dissemination and close association with gangue minerals, the hematite and limonite particles are hard to be fully liberated, bringing difficulty in their separation. Staged grinding-separation process consisting of high intensity magnetic separation and reverse floatation wag adopted in the beneficiation test on the regionally representative hematite—limonite ore resource. At a grind of 70.0% -200 mesh for the primary grinding and 98.7% -200 mesh for the secondary grinding, the final iron concentrate grade 58.26% and having an iron recovery of 8.33% can be achieved after reverse flotation process test on magnetic concentrate.


Sign in / Sign up

Export Citation Format

Share Document