scholarly journals Influence of Quenching and Partitioning Parameters on Phase Transformations and Mechanical Properties of Medium Manganese Steel for Press-Hardening Application

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1879
Author(s):  
Charline Blankart ◽  
Sebastian Wesselmecking ◽  
Ulrich Krupp

It has been proven that through targeted quenching and partitioning (Q & P), medium manganese steels can exhibit excellent mechanical properties combining very high strength and ductility. In order to apply the potential of these steels in industrial press hardening and to avoid high scrap rates, it is of utmost importance to determine a robust process window for Q & P. Hence, an intensive study of dilatometry experiments was carried out to identify the influence of quenching temperature (TQ) and partitioning time (tp) on phase transformations, phase stabilities, and the mechanical properties of a lean medium manganese steel. For this purpose, additional scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDX) examinations as well as tensile testing were performed. Based on the dilatometry data, an adjustment of the Koistinen–Marburger (K-M) equation for medium manganese steel was developed. The results show that a retained austenite content of 12–21% in combination with a low-phase fraction of untempered secondary martensite (max. 20%) leads to excellent mechanical properties with a tensile strength higher than 1500 MPa and a total elongation of 18%, whereas an exceeding secondary martensite phase fraction results in brittle failure. The optimum retained austenite content was adjusted for TQ between 130 °C and 150 °C by means of an adapted partitioning.

2012 ◽  
Vol 52 (5) ◽  
pp. 868-873 ◽  
Author(s):  
Hai Feng Xu ◽  
Jie Zhao ◽  
Wen Quan Cao ◽  
Jie Shi ◽  
Cun Yun Wang ◽  
...  

2016 ◽  
Vol 850 ◽  
pp. 659-663
Author(s):  
Xiao Gang Li ◽  
Ai Min Zhao ◽  
Hong Hong Zheng ◽  
Shao Heng Sun ◽  
Hong Xiang Yin

The microstructure and mechanical properties of a medium manganese quenching and partitioning (Q&P) steel for automobile were investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and mechanical property test. The grain size and recovery degree were greatly affected by annealing temperature normally. The result shows that the medium manganese steel after quenching and partitioning (Q&P) heat treatment exhibited good mechanical properties. The maximum tensile strength and yield strength was 1280MPa and 1421MPa at 600°C, respectively. Additionally, the product of strength and plasticity could reached to 40472MPa×% at 640°C. Annealing temperature also had a great influence on the volume of retained austenite which increases linearly with the rise of annealing temperature as well.


2016 ◽  
Vol 879 ◽  
pp. 2293-2299
Author(s):  
Ying Zou ◽  
Yun Bo Xu ◽  
Zhi Ping Hu ◽  
Xiao Long Yang ◽  
Xiao Dong Tan ◽  
...  

An intercritical annealing process was applied to a medium manganese steel plate (Fe-0.01C-5.3Mn-1.53Si) after the thermo-mechanical controlled processing (TMCP) and ultrafast cooling (UFC). The microstructures were observed by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The retained austenite was measured by XRD and mechanical properties were measured by uniaxial tensile and impact tests. The influence of different annealing temperature was compared and the relationship between microstructures and mechanical properties was investigated. Results showed that the microstructures of the medium manganese steel plate were characterized by ultrafine grained lath-like ferrite and retained austenite and the excellent mechanical properties could be obtained at the annealing temperature of 640°C for 5 h. The volume fraction of the retained austenite reached up to 21%, which could significantly increase the elongation compared with the traditional steel plate. The mechanical property results revealed that the steel possessed adequate ultimate tensile strength of 865MPa and excellent impact energy of 121J (-20°C). The outstanding combination of strength and toughness indicates that the steel has a bright application prospect.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3081
Author(s):  
Lena Heemann ◽  
Farhad Mostaghimi ◽  
Bernd Schob ◽  
Frank Schubert ◽  
Lothar Kroll ◽  
...  

Medium manganese steels can exhibit both high strength and ductility due to transformation-induced plasticity (TRIP), caused by metastable retained austenite, which in turn can be adjusted by intercritical annealing. This study addresses the laser additive processability and mechanical properties of the third-generation advanced high strength steels (AHSS) on the basis of medium manganese steel using Laser Powder Bed Fusion (LPBF). For the investigations, an alloy with a manganese concentration of 5 wt.% was gas atomized and processed by LPBF. Intercritical annealing was subsequently performed at different temperatures (630 and 770 °C) and three annealing times (3, 10 and 60 min) to adjust the stability of the retained austenite. Higher annealing temperatures lead to lower yield strength but an increase in tensile strength due to a stronger work-hardening. The maximum elongation at fracture was approximately in the middle of the examined temperature field. The microstructure and properties of the alloy were further investigated by scanning electron microscopy (SEM), hardness measurements, X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and element mapping.


2014 ◽  
Vol 1082 ◽  
pp. 202-207 ◽  
Author(s):  
Shu Yan ◽  
Xiang Hua Liu

A low carbon steel was treated by quenching and partitioning (Q&P) process, and a detailed characterization of the microstructural evolution and testing of mechanical properties were carried out. The resulted mechanical properties indicate that with the partitioning time increasing, the tensile strength decreases rapidly first and then remains stable, and the total elongation increases first then decreases. The investigated steel subjected to Q&P process exhibits excellent products of strength and elongation (17.8-20.6 GPa•%). The microstructural evolution of martensite matrix during the partitioning step was observed, and the morphology and content of retained austenite were characterized. The working hardening behavior of the samples was analyzed, and the retained austenite with higher carbon content contributes to the uniform elongation more effectively.


2010 ◽  
Vol 654-656 ◽  
pp. 82-85 ◽  
Author(s):  
Shu Zhou ◽  
Ying Wang ◽  
Nai Lu Chen ◽  
Yong Hua Rong ◽  
Jian Feng Gu

The quenching-partitioning-tempering (Q-P-T) process, based on the quenching and partitioning (Q&P) treatment, has been proposed for producing high strength steels containing significant fraction of film-like retained austenite and controlled amount of fine martensite laths. In this study, a set of Q-P-T processes for C-Mn-Si-Ni-Nb hot rolled plates are designed and realized. The steels with Q-P-T processes present a combination of high strength and relatively good ductility. The origin of such mechanical properties is revealed by microstructure characterization.


Sign in / Sign up

Export Citation Format

Share Document