scholarly journals Dynamic Simulations of Manufacturing Processes: Hybrid-Evolving Technique

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1884
Author(s):  
Amir M. Horr ◽  
Johannes Kronsteiner

Hybrid physical-data-driven modeling techniques have steadily been developed to address the multi-scale and multi-physical aspects of dynamic process simulations. The analytical and computational features of a new hybrid-evolving technique for these processes are elaborated herein and its industrial applications are highlighted. The authentication of this multi-physical and multi-scale framework is carried out by developing an integrated simulation environment where multiple solver technologies are employed to create a reliable industrial-oriented simulation framework. The goal of this integrated simulation framework is to increase the predictive power of material and process simulations at the industrial scale.

Author(s):  
Hyun-Shik Oh ◽  
Dohyung Kim ◽  
Sunju Lee

This paper describes the quality attributes of an integrated simulation software for weapon systems named Advanced distributed simulation environment(AddSIM). AddSIM is developed as a key enabler for Defense Modeling & Simulation(M&S) systems which simulate battlefields and used for battle experiments, analyses, military exercises, training, etc. AddSIM shall provide a standard simulation framework of the next Defense M&S systems. Therefore AddSIM shall satisfy not only functional but also quality requirements such as availability, modifiability, performance, testability, usability, and others. AddSIM consists of operating softwares of hierarchical components including graphical user interface, simulation engines, and support services(natural environment model, math utility, etc.), and separated weapon system models executable on the operating softwares. The relation between software architectures and their quality attributes are summarized from previous works. And the AddSIM architecture and its achievements in the aspect of quality attributes are reviewed.


2005 ◽  
Vol 893 ◽  
Author(s):  
Lilian Berlu ◽  
Gaelle Rosa ◽  
Philippe Faure ◽  
Nathalie Baclet ◽  
Gérald Jomard

AbstractThe plutonium α decay leads to the formation of numerous point defects in the metal structure. The multi-scale modeling of self-irradiation effects in plutonium alloys needs a quantitative knowledge of defects population properties. In this work, we initiated a parametric study of molecular dynamics displacement cascade simulations to get properties of defects microstructure such as number of point defects, number and size of clusters, spatial repartition and spatial expansion of the cascade. These data constitute some of the input parameters for the mesoscopic scale simulations. First results obtained for two 2 keV energy cascades simulations are presented and discussed.


2022 ◽  
Vol 134 ◽  
pp. 103455
Author(s):  
Angelo Coppola ◽  
Luca Di Costanzo ◽  
Luigi Pariota ◽  
Stefania Santini ◽  
Gennaro Nicola Bifulco

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hong-Chuong Tran ◽  
Yu-Lung Lo ◽  
Trong-Nhan Le ◽  
Alan Kin-Tak Lau ◽  
Hong-You Lin

Purpose Depending on an experimental approach to find optimal parameters for producing fully dense (relative density > 99%) Inconel 718 (IN718) components in the selective laser melting (SLM) process is expensive and offers no guarantee of success. Accordingly, this study aims to propose a multi-scale simulation framework to guide the choice of processing parameters in a more pragmatic manner. Design/methodology/approach In the proposed approach, a powder layer, ray tracing and heat transfer simulation models are used to calculate the melt pool dimensions and evaporation volume corresponding to a small number of laser power and scanning speed conditions within the input design space. A layer-heating model is then used to determine the inter-layer idle time required to maximize the temperature convergence rate of the solidified layer beneath the power bed. The simulation results are used to train surrogate models to construct SLM process maps for 3,600 pairs of the laser power and scanning speed within the input design space given three different values of the underlying solidified layer temperature (i.e., 353 K, 673 K and 873 K). The ideal selection of laser power and scanning speed of each process map is chosen based on four quality-related criteria listed as follows: without the appearance of key-hole melting; an evaporation volume less than the volume of the d90 powder particles; ensuring the stability of single scan tracks; and avoiding a weak contact between the melt pool and substrate. Finally, the optimal laser power and scanning speed parameters for the SLM process are determined by superimposing the optimal regions of the individual process maps. Findings The feasibility of the proposed approach is demonstrated by fabricating IN718 test specimens using the optimal processing conditions identified by the simulation framework. It is shown that the maximum density of the fabricated parts is 99.94%, while the average density is 99.88% and the standard deviation is less than 0.05%. Originality/value The present study proposed a multi-scale simulation model which can efficiently predict the optimal processing conditions for producing fully dense components in the SLM process. If the geometry of the three-dimensional printed part is changed or the machine and powder material is altered, users can use the proposed method for predicting the processing conditions that can produce the high-density part.


2020 ◽  
Vol 12 (12) ◽  
pp. 5059
Author(s):  
Xinzheng Lu ◽  
Donglian Gu ◽  
Zhen Xu ◽  
Chen Xiong ◽  
Yuan Tian

To improve the ability to prepare for and adapt to potential hazards in a city, efforts are being invested in evaluating the performance of the built environment under multiple hazard conditions. An integrated physics-based multi-hazard simulation framework covering both individual buildings and urban areas can help improve analysis efficiency and is significant for urban planning and emergency management activities. Therefore, a city information model-powered multi-hazard simulation framework is proposed considering three types of hazards (i.e., earthquake, fire, and wind hazards). The proposed framework consists of three modules: (1) data transformation, (2) physics-based hazard analysis, and (3) high-fidelity visualization. Three advantages are highlighted: (1) the database with multi-scale models is capable of meeting the various demands of stakeholders, (2) hazard analyses are all based on physics-based models, leading to rational and scientific simulations, and (3) high-fidelity visualization can help non-professional users better understand the disaster scenario. A case study of the Tsinghua University campus is performed. The results indicate the proposed framework is a practical method for multi-hazard simulations of both individual buildings and urban areas and has great potential in helping stakeholders to assess and recognize the risks faced by important buildings or the whole city.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 886
Author(s):  
Amir M. Horr ◽  
Johannes Kronsteiner

New and more complex casting technologies are growing, and foundries are using innovative methods to reduce cost and energy consumption and improve their product qualities. Numerical techniques, as tools to design and examine the process improvements, are also evolving continuously to embrace modelling of more dynamic systems for industrial applications. This paper will present a fresh approach towards the numerical simulation of dynamic processes using an evolving and dynamic mesh technique. While the conventional numerical techniques have been employed for these dynamic processes using a fixed domain approach, the more realistic evolving approach is used herein to match the complex material processes in new foundries. The underpinning of this new dynamic approach is highlighted by an evolving simulation environment where multiple mesh entities are appended to the existing numerical domain at timesteps. Furthermore, the change of the boundary and energy sources within casting process simulations have rationally been presented and its profound effects on the computational time and resources have been examined. The discretization and solver computational features of the technique are presented and the evolution of the casting domain (including its material and energy contents) during the process is described for semi-continuous casting process applications.


Author(s):  
Vijaya V. N. Sriram Malladi ◽  
Mohammad I. Albakri ◽  
Pablo A. Tarazaga ◽  
Serkan Gugercin

Dispersion relations describe the frequency-dependent nature of elastic waves propagating in structures. Experimental determination of dispersion relations of structural components, such as the floor of a building, can be a tedious task, due to material inhomogeneity, complex boundary conditions, and the physical dimensions of the structure under test. In this work, data-driven modeling techniques are utilized to reconstruct dispersion relations over a predetermined frequency range. The feasibility of this approach is demonstrated on a one-dimensional beam where an exact solution of the dispersion relations is attainable. Frequency response functions of the beam are obtained numerically over the frequency range of 0–50kHz. Data-driven dynamical model, constructed by the vector fitting approach, is then deployed to develop a state-space model based on the simulated frequency response functions at 16 locations along the beam. This model is then utilized to construct dispersion relations of the structure through a series of numerical simulations. The techniques discussed in this paper are especially beneficial to such scenarios where it is neither possible to find analytical solutions to wave equations, nor it is feasible to measure dispersion curves experimentally. In the present work, actual experimental data is left for future work, but the complete framework is presented here.


SIMULATION ◽  
1999 ◽  
Vol 72 (5) ◽  
pp. 283-294 ◽  
Author(s):  
Alan D. George ◽  
Ryan B. Fogarty ◽  
Jeff S. Markwell ◽  
Michael D. Miars

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
M. G. Perhinschi ◽  
M. R. Napolitano ◽  
S. Tamayo

The paper initiates a comprehensive conceptual framework for an integrated simulation environment for unmanned autonomous systems (UAS) that is capable of supporting the design, analysis, testing, and evaluation from a “system of systems” perspective. The paper also investigates the current state of the art of modeling and performance assessment of UAS and their components and identifies directions for future developments. All the components of a comprehensive simulation environment focused on the testing and evaluation of UAS are identified and defined through detailed analysis of current and future required capabilities and performance. The generality and completeness of the simulation environment is ensured by including all operational domains, types of agents, external systems, missions, and interactions between components. The conceptual framework for the simulation environment is formulated with flexibility, modularity, generality, and portability as key objectives. The development of the conceptual framework for the UAS simulation reveals important aspects related to the mechanisms and interactions that determine specific UAS characteristics including complexity, adaptability, synergy, and high impact of artificial and human intelligence on system performance and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document