scholarly journals Joining of Aluminium Alloy Sheets to Aluminium Alloy Foam Using Metal Glasses

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 614 ◽  
Author(s):  
Muhammad Bangash ◽  
Graziano Ubertalli ◽  
Davide Di Saverio ◽  
Monica Ferraris ◽  
Niu Jitai

Aluminium alloy foam is a lightweight material with high energy absorption properties and can potentially replace bulk Al-components. The aim of this work is to develop a brazing technique to join aluminium facing sheets to aluminium alloy foam to obtain aluminium foam sandwich panels for applications where high service temperature is a requirement. Al-6016 alloy sheets were brazed to aluminium alloy foam using two aluminium based (Al-Cu-Mg and Al-Si-Mg-Ti) metal glasses at 560 °C–590 °C in an argon atmosphere. Microstructure and microhardness profiles of the aluminium alloy sheet/aluminium alloy foam brazed joints were analysed using a microhardness tester and scanning electron microscope equipped with electron dispersion spectroscopy. A three-point bending test was conducted to study the flexural behaviour of the aluminium foam sandwich composite panels.

2021 ◽  
Vol 113 (1-2) ◽  
pp. 59-72
Author(s):  
Yohei Abe ◽  
Ken-ichiro Mori

AbstractTo increase the usage of high-strength steel and aluminium alloy sheets for lightweight automobile body panels, the joinability of sheet combinations including a 780-MPa high-strength steel and an aluminium alloy A5052 sheets by mechanical clinching and self-pierce riveting was investigated for different tool shapes in an experiment. All the sheet combinations except for the two steel sheets by self-pierce riveting, i.e., the two steel sheets, the two aluminium alloy sheets, and the steel-aluminium alloy sheets, were successfully joined by both the joining methods without the gaps among the rivet and the sheets. Then, to show the durability of the joined sheets, the corrosion behaviour and the joint strength of the aged sheets by a salt spray test were measured. The corrosion and the load reduction of the clinched and the riveted two aluminium alloy sheets were little. The corrosion of the clinched two steel sheets without the galvanized layer progressed, and then the load after 1176 h decreased by 85%. In the clinched two galvanized steel sheets, the corrosion progress slowed down by 24%. In the clinched steel and aluminium alloy sheets, the thickness reduction occurred near the minimum thickness of the upper sheet and in the upper surface on the edge of the lower aluminium alloy sheet, whereas the top surface of the upper sheet and the upper surface of the lower sheet were mainly corroded in the riveted joint. The load reduction was caused by the two thickness reductions, i.e., the reduction in the minimum thickness of the upper sheet and the reduction in the flange of the aluminium alloy sheet. Although the load of the clinched steel without the galvanized coating layer and aluminium alloy sheets decreased by about 20%, the use of the galvanized steel sheet brought the decrease by about 11%. It was found that the use of the galvanized steel sheets is effective for the decrease of strength reduction due to corrosion.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 424
Author(s):  
Radoslaw Piotr Radzki ◽  
Marek Bienko ◽  
Dariusz Wolski ◽  
Monika Ostapiuk ◽  
Pawel Polak ◽  
...  

Our study aimed to verify the hypothesis of the existence of a programming effect of parental obesity on the growth, development and mineralization of the skeletal system in female and male rat offspring on the day of weaning. The study began with the induction of obesity in female and male rats of the parental generation, using a high-energy diet (group F). Females and males of the control group received the standard diet (group S). After 90 days of dietary-induced obesity, the diet in group F was changed into the standard. Rats from groups F and S were mated to obtain offspring which stayed with their mothers until 21 days of age. Tibia was tested using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), micro-computed tomography (µCT) and mechanical strength using the three-point bending test. Biochemical analysis of blood serum bone metabolism markers was performed. DXA analysis showed higher tibia bone mineral content (BMC) and area. pQCT measurements of cortical and trabecular tissue documented the increase of the volumetric bone mineral density and BMC of both bone compartments in offspring from the F group, while µCT of the trabecular tissue showed an increase in trabecular thickness and a decrease of its separation. Parental obesity, hence, exerts a programming influence on the development of the skeletal system of the offspring on the day of the weaning, which was reflected in the intensification of mineralization and increased bone strength.


2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


Author(s):  
Zhengwei Lin ◽  
Qinghong Zhang ◽  
Gongliang Wang ◽  
Jie Mao ◽  
Martin Hoch ◽  
...  

ABSTRACT Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.


Volume 3 ◽  
2004 ◽  
Author(s):  
L. Han ◽  
K. Young ◽  
R. Hewitt ◽  
A. Chrysanthou ◽  
J. M. O’Sullivan

Self-piercing riveting, as an alternative joining method to spot-welding, has attracted considerable interest from the automotive industry and has been widely used in aluminium intensive vehicles. One of the important factors that need to be considered is the effect of cyclic loading in service, leading to possible fatigue failure. The previous work reported in the public domain on the behaviour of self-piercing rivets has mainly focused on static tests. The work which is reported in this paper is concerned with the fatigue behaviour of single-rivet joints, joining two 2mm 5754 aluminium alloy sheets. The investigation also examined the effect of interfacial conditions on the fatigue behaviour. A number of fatigue failure mechanisms were observed based on rivet fracture, sheet fracture and combinations of these. The investigation has shown that they were dependent on the applied load and the sheet surface condition. Three-parameter Weibull analysis, using Reliasoft Weibull ++5.0 software, was conducted to analyse the experimental results. The analysis enabled the prediction of early-type failure (infant mortality failure) and wear-out failure patterns depending on the condition of the self-piercing riveted joints and the alloy sheet surface.


2002 ◽  
Vol 396-402 ◽  
pp. 1691-1696 ◽  
Author(s):  
Reinhold Braun ◽  
Günther Roth ◽  
Johannes Arnold

Sign in / Sign up

Export Citation Format

Share Document