scholarly journals A Mathematical Model of Deformation under High Pressure Torsion Extrusion

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 306 ◽  
Author(s):  
Roman Kulagin ◽  
Yan Beygelzimer ◽  
Yuri Estrin ◽  
Yulia Ivanisenko ◽  
Brigitte Baretzky ◽  
...  

High pressure torsion extrusion (HPTE) is a promising new mechanism for severe plastic deformation of metals and alloys. It enables the manufacture of long products with a radial gradient ultrafine-grained structure and of composite materials with a helical inner architecture at the meso and the macro scale. HPTE is very promising as a technique enabling light weighting, especially with magnesium, aluminium and titanium alloys. For the first time, this article presents an analytical model of the HPTE process that makes it possible to investigate the role of the various process parameters and calculate the distribution of the equivalent strain over the entire sample length. To verify the model, its predictions were compared with the numerical simulations by employing the finite element software QForm. It was shown that potential negative effects associated with the slippage of a sample relative to the container walls can be suppressed through appropriate die design and an efficient use of the friction forces.

2013 ◽  
Vol 114 (18) ◽  
pp. 183509 ◽  
Author(s):  
Matthias Wegner ◽  
Jörn Leuthold ◽  
Martin Peterlechner ◽  
Daria Setman ◽  
Michael Zehetbauer ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


Author(s):  
Ho Yong Um ◽  
Byung Ho Park ◽  
Dong-Hyun Ahn ◽  
Mohamed Ibrahim Abd El Aal ◽  
Jaechan Park ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 338-344
Author(s):  
Wan Ji Chen ◽  
Jie Xu ◽  
De Tong Liu ◽  
De Bin Shan ◽  
Bin Guo ◽  
...  

High-pressure torsion (HPT) was conducted under 6.0 GPa on commercial purity titanium up to 10 turns. An ultrafine-grained (UFG) pure Ti with an average grain size of ~96 nm was obtained. The thermal properties of these samples were studied by using differential scanning calorimeter (DSC) which allowed the quantitative determination of the evolution of stored energy, the recrystallization temperatures, the activation energy involved in the recrystallization of the material and the evolution of the recrystallized fraction with temperature. The results show that the stored energy increases, beyond which the stored energy seems to level off to a saturated value with increase of HPT up to 5 turns. An average activation energy of about 101 kJ/mol for the recrystallization of 5 turns samples was determined. Also, the thermal stability of the grains of the 5 turns samples with subsequent heat treatments were investigated by microstructural analysis and Vickers microhardness measurements. It is shown that the average grain size remains below 246 nm when the annealing temperature is below 500 °C, and the size of the grains increases significantly for samples at the annealing temperature of 600 °C.


2019 ◽  
Vol 60 (7) ◽  
pp. 1367-1376 ◽  
Author(s):  
Terukazu Nishizaki ◽  
Kaveh Edalati ◽  
Seungwon Lee ◽  
Zenji Horita ◽  
Tadahiro Akune ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document