scholarly journals Dry Sliding Wear Performance of ZA27/SiC/GraphiteComposites

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 717 ◽  
Author(s):  
Nenad Miloradović ◽  
Rodoljub Vujanac ◽  
Slobodan Mitrović ◽  
Danijela Miloradović

The paper describes the wear performance of zinc-aluminium ZA27 alloy, reinforced with silicon-carbide (SiC) and graphite (Gr) particles. The compo-casting technique produced the composite samples. The tested samples were: ZA27 alloy, ZA27/5%SiC composite, and ZA27/5%SiC/3%Gr hybrid composite. A block-on-disc tribometer was used during wear tests under the dry sliding conditions by varying the normal loads and sliding speeds. The sliding distance was constant during tests. The microstructure of the worn surfaces of the tested materials was analysed using the scanning electronic microscope (SEM) and the energy dispersive spectrometry (EDS).

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sudheer ◽  
Ravikantha Prabhu ◽  
K. Raju ◽  
Thirumaleshwara Bhat

This study evaluates the influence of independent parameters such as sliding velocity (A), normal load (B), filler content (C), and sliding distance (D) on wear performance of potassium-titanate-whiskers (PTW) reinforced epoxy composites using a statistical approach. The PTW were reinforced in epoxy resin to prepare whisker reinforced composites of different compositions using vacuum-assisted casting technique. Dry sliding wear tests were conducted using a standard pin on disc test setup following a well planned experimental schedule based on Taguchi’s orthogonal arrays. With the signal-to-noise (S/N) ratio and analysis of variance (ANOVA) optimal combination of parameters to minimize the wear rate was determined. It was found that inclusion of PTW has greatly improved the wear resistance property of the composites. Normal load was found to be the most significant factor affecting the wear rate followed by (C), (D), and (A). Interaction effects of various control parameters were less significant on wear rate of composites.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3752
Author(s):  
Nenad Miloradović ◽  
Rodoljub Vujanac ◽  
Ana Pavlović

The composites samples based on ZA27 alloy were subjected to tribological tests and the observed results are presented in this paper. The samples (ZA27/5%SiC and ZA27/5%SiC/5%Gr) were obtained by compo-casting technique. Their wear behaviour was compared to the base alloy. The wear tests were done by using a block-on-disc tribometer under lubricated sliding conditions. Tribological investigation were conducted for three normal loads (40 N, 80 N, and 120 N), three sliding speeds (0.25 m/s, 0.5 m/s, and 1 m/s), and sliding distance of 1200 m. The tested materials were analysed by the scanning electronic microscope (SEM) and the energy dispersive spectrometry (EDS). The presence of oil lubricant improved the wear resistance and friction behaviour of both composites and base alloy. The tested composites show much higher wear resistance than the corresponding matrix material. It was established that the ZA27/5%SiC/5%Gr hybrid composite has best tribological properties.


2019 ◽  
Vol 26 (09) ◽  
pp. 1950052
Author(s):  
SUBBARAYAN SIVASANKARAN

The present research paperfocusses on manufacture of AlSi6Cu4–3 wt.% TiO2 metal matrix composite (MMC) through liquid metallurgy route, and the manufactured composites are tested for their dry sliding wear behavior using response surface methodology (RSM). The extensive microstructural investigation is carried out to examine the dispersion of Titania particles, its bonding ability, and embedment characteristics with the matrix. The wear rate on the developed MMC is investigated and predicted using regression model. Further, the confirmation test is conducted to validate the model. The microstructures of the composite had revealed that TiO2 particles are dispersed in the Al matrix. Further, the surface plots show that the wear rate started to vary linearly with the function of load whereas the wear rate starts to vary nonlinearly with the function of the sliding velocity and the sliding distance. In addition, the worn surfaces were investigated through the scanning electron microscopewhich addressed the wear mechanisms and revealed that TiO2 particles enhance the wear performance of aluminum alloy by a reduction in material removal at all wear conditions.


2015 ◽  
Vol 830-831 ◽  
pp. 333-336 ◽  
Author(s):  
M. Ananda Jothi ◽  
S. Ramanathan

Titanium and its alloys exhibit a unique combination of physical and corrosion resistance properties which make them ideal materials for space flight engine component such as disks and blades of compressor, marine applications, chemical industries and many bio medical applications. However the use of these materials is limited due to its poor tribological properties. Dry sliding wear tests were performed on Ti-6Al-4V using a pin-on-disc (EN31 steel) configuration. Wear rates were measured with different load and sliding velocity at a constant sliding distance. Microstructures of worn surfaces were characterized by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


2011 ◽  
Vol 306-307 ◽  
pp. 425-428
Author(s):  
Jing Li ◽  
Xiao Hong Fan ◽  
De Ming Sun

Fe-28Al and Fe-28Al-10Ti alloys were prepared by mechanical alloying and hot pressing. The phases and dry sliding wear behavior were studied. The results show that Fe-28Al bulk materials are mainly characterized by the low ordered B2 Fe3Al structure with some dispersed Al2O3 particles. Fe-28Al-10Ti exhibits more excellent wear resistance than Fe-28Al, especially after long distance sliding wear test. There are obvious differences in wear mechanisms of Fe-28Al and Fe-28Al-10Ti alloys under different testing conditions. Under the load of 100N, there is plastic deformation on the worn surface of Fe-28Al. The main wear performance of Fe-28Al-10Ti is particle abrasion, the characteristics of which are micro cutting and micro furrows, but micro-crack and layer splitting begin to form on the surface of Fe-28Al. Under the load of 200N, serious plastic deformation and work-hardening lead to rapid crack propagation and eventually the fatigue fracture of Fe-28Al. Plastic deformation is the main wear mechanism of Fe-28Al-10Ti under the load of 200N, which are characterized by micro-crack and small splitting from the worn surface.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Naveed Anjum ◽  
S. L. Ajit Prasad ◽  
B. Suresha

The mechanical properties and dry sliding wear behaviour of glass fabric reinforced epoxy (G-E) composite with varying weight percentage of silicon dioxide (SiO2) filler have been studied in the present work. The influence of sliding distance, velocity, and applied normal load on dry sliding wear behaviour has been considered using Taguchi's L9orthogonal array. Addition of SiO2increased the density, hardness, flexural, and impact strengths of G-E composite. Results of dry sliding wear tests showed increasing wear volume with increase in sliding distance, load, and sliding velocity for G-E and SiO2filled G-E composites. Taguchi's results indicate that the sliding distance played a significant role followed by applied load, sliding velocity, and SiO2loading. Scanning electron micrographs of the worn surfaces of composite samples at different test parameters show smooth surface, microploughing, and fine grooves under low load and velocity. However, severe damage of matrix with debonding and fiber breakage was seen at high load and velocity especially in unfilled G-E composite.


2019 ◽  
Vol 285 ◽  
pp. 63-68 ◽  
Author(s):  
Mnel A. Abdelgnei ◽  
M. Zaidi Omar ◽  
Mariyam Jameelah Ghazali

Earlier work has shown that Al-5.7Si-2Cu-0.3Mg aluminium alloy is suitable for thixoforming process. Here, the dry sliding wear behaviour of the alloy, in the as-cast and thixoformed conditions were investigated. The cooling slope technique was used to produce the alloy with globular microstructure for the thixoforming process. Both the thixoformed and cast samples were subjected to T6 heat treatments prior to the wear tests. The tests were carried out using a pin-on-disc tribometer, against a hardened M2 tool steel disc of 62 HRC at different loads, under dry sliding conditions at fixed sliding speed and sliding distance of 1 m.s–1 and 5 km respectively. The microstructural response, worn surfaces were thoroughly and carefully examined using various methods such as scanning electron microscopy, energy dispersive spectroscopy, and differential scanning calorimetry. The density of the heat treated thixoformed alloys showed significant increase in the hardness property, among others, due to its reduced porosity. Their wear test results also observed that the weight loss of materials increase with an increase in the input load and the sliding distance for all samples. However, the as-cast alloy displayed higher wear rate compared with the thixoformed alloys. In general, the wear mechanisms showed a mixture of abrasive, oxidative and delamination wear (mild wear) at low applied loads and mainly an adhesive (severe wear) at high applied loads.


Sign in / Sign up

Export Citation Format

Share Document