scholarly journals Influence of Arc Brazing Parameters on Microstructure and Joint Properties of Electro-Galvanized Steel

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1006
Author(s):  
Lee ◽  
Sharma ◽  
Jung ◽  
Jung

Arc brazing of zinc-coated steel (EG, Electro-galvanized steel) using Cu-3 wt%Si filler metal was performed. The influence of arc current and brazing speed on the bonding properties of the joint, such as bead characteristics, arc penetration, joint hardness, and tensile shear strength were evaluated. The microstructural characteristics of the joint were examined by scanning electron microscopy (SEM) and the compositional information was revealed by energy dispersive spectroscopy (EDS). The throat thickness varies inversely with the brazing speed. The EG joint shows the formation of Fe2Si phases, which result in higher microhardness than the base metal. The tensile samples were fractured in base metal, while minor bead cracks developed in the samples brazed at 80 cm/min-80 A, 60 cm/min-70 A, 70 cm/min-70 A.

2005 ◽  
Vol 105 ◽  
pp. 371-378 ◽  
Author(s):  
G. Vincent ◽  
C. Counhaye ◽  
Claude Esling

This work deals with early results obtained in numerical simulation of the skin-pass of zinc coated steel sheets. First, the streamline model and its adaptation to the case of the temper rolling of coated steel sheets are detailed. Second, the influence of various parameters of the rolling process on the strain and stress fields in the sheet is numerically calculated.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 785 ◽  
Author(s):  
Lin Wang ◽  
Daqian Sun ◽  
Hongmei Li ◽  
Xiaoyan Gu ◽  
Chengjie Shen

Ti3Al-Nb alloy (Ti-24Al-15Nb) was welded by a pulsed laser welding system without and with pure Nb filler metal. The results indicated that pure Nb filler metal had profound effects on the microstructures and mechanical properties of the laser-welded joints. The joint without filler metal consisted of the weld zone (α’2 + B2), heat affected zone HAZ1 (α2 + B2), HAZ2 (α2 + O + B2) and base metal (α2 + O + B2), and gas pores were generated in the weld resulting in the deterioration of the joint strength (330 MPa) and elongation (1.9%). When the Nb filler metal was used, the weld microstructure (NbTi solid solution + O + B2) was obtained, and the joint properties were significantly improved, which was associated with the strengthening effect of the NbTi solid solution, O phase precipitation and the slip transmission between O and B2 phases, and the restraining of the formation of martensite (α’2) and gas pores in the weld. The strength (724 MPa) and elongation (5.1%) of the joint increased by 119.4% and 168.4% compared with those of the joint without filler metal, and the joint strength was able to reach 81.7% of the base metal strength (886 MPa). It is favorable to use pure Nb filler metal for improving the mechanical properties of laser-welded Ti3Al-Nb alloy joints.


2011 ◽  
Vol 189-193 ◽  
pp. 3253-3256
Author(s):  
Hong Tao Zhang ◽  
Jia Kun Liu ◽  
Hong Yun Zhao

Dissimilar metals joints between aluminum and zinc-coated steel were joined by CMT machine with ER4043 filler metal. The microstructure and mechanical properties of the joints obtained with different heat input were analyzed. The results showed that the thickness of interfacial intermetallic compound was determined by the welding heat input. Tensile specimens were broken in HAZ of aluminum base metal and the tensile strength of the joint can reach 122.3MPa.


2019 ◽  
Vol 9 (21) ◽  
pp. 4640 ◽  
Author(s):  
Dong-Hyuck Kam ◽  
Nam-Ki Jeon ◽  
Taek-Eon Jeong ◽  
Jedo Kim

In this study, we present improved fusion-bonding strength results between carbon fiber-reinforced polyetheretherketone (CFR-PEEK) and zinc-coated steel through the introduction of pre-inscribed laser surface patterns. Optimized laser welding parameters, including laser power, focal position, pitch, number of passes, and clamping pressure, are presented along with parameters for producing the rectangular laser patterns. It was found that for the optimized parameters, the tensile shear strength of the welded samples is improved by as much as 100% when pre-inscribed laser patterns are present. Detailed SEM images of the fractured fusion welded joint samples after the tensile shear test are presented for analysis. The tight bonding between the polymer matrix and the zinc-coated steel inside the formed grooves is found to be the main reason behind the increased tensile shear strength. A comparison of the tensile shear loads for various joining methods is also presented and discussed.


2015 ◽  
Vol 60 (4) ◽  
pp. 2913-2922 ◽  
Author(s):  
A. Lisiecki ◽  
R. Burdzik ◽  
G. Siwiec ◽  
Ł. Konieczny ◽  
J. Warczek ◽  
...  

Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.


2014 ◽  
Vol 76 (5-8) ◽  
pp. 1333-1342 ◽  
Author(s):  
Ma Kai ◽  
Yu Zhishui ◽  
Zhang Peilei ◽  
Lu Yunlong ◽  
Yan Hua ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 875
Author(s):  
Hao Tian ◽  
Jianchao He ◽  
Jinbao Hou ◽  
Yanlong Lv

TiB crystal whiskers (TiBw) can be synthesized in situ in Ti alloy matrix through powder metallurgy for the preparation of a new type of ceramic fiber-reinforced Ti matrix composite (TMC) TiBw/Ti-6Al-4V. In the TiBw/Ti-6Al-4V TMC, the reinforced phase/matrix interface is clean and has superior comprehensive mechanical properties, but its machinability is degraded. Hence, the bonding of reliable materials is important. To further optimize the TiBw/Ti-6Al-4V brazing technology and determine the relationship between the microstructure and tensile property of the brazed joint, results demonstrate that the elements of brazing filler metal are under sufficient and uniform diffusion, the microstructure is the typical Widmanstätten structure, and fine granular compounds in β phase are observed. The average tensile strength of the brazing specimen is 998 MPa under room temperature, which is 97.3% of that of the base metal. During the high-temperature (400 °C) tensile process, a fracture occurred at the base metal of the highest tensile test specimen with strength reaching 689 MPa, and the tensile fracture involved a combination of intergranular and transgranular modes at both room temperature and 400 °C. The fracture surface has dimples, secondary cracks are generated by the fracture of TiB whiskers, and large holes form when whole TiB whiskers are removed. The proposed algorithm provides evidence for promoting the application of TiBw/Ti-6Al-4V TMCs in practical production.


Sign in / Sign up

Export Citation Format

Share Document