scholarly journals Dynamics Behaviors of Droplet on Hydrophobic Surfaces Driven by Electric Field

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 778 ◽  
Author(s):  
Jie Liu ◽  
Sheng Liu

Droplet microfluidic technology achieves precise manipulation of droplet behaviors by designing and controlling the flow and interaction of various incompatible fluids. The electric field provides a non-contact, pollution-free, designable and promising method for droplet microfluidics. Since the droplet behaviors in many industrial and biological applications occur on the contact surface and the properties of droplets and the surrounding environment are not consistent, it is essential to understand fundamentally the sessile droplet motion and deformation under various conditions. This paper reports a technique using the pin-plate electrode to generate non-uniform dielectrophoresis (DEP) force to control sessile droplets on hydrophobic surfaces. The electrohydrodynamics phenomena of the droplet motion and deformation are simulated using the phase-field method. It is found that the droplet moves along the substrate surface to the direction of higher electric field strength, and is accompanied with a certain offset displacement. In addition, the effect of pin electric potentials, surface contact angles and droplet volumes on the droplet motion and deformation are also studied and compared. The results show that higher potentials, more hydrophobic surfaces and larger droplet volumes exhibit greater droplet horizontal displacement and offset displacement. But for the droplet vertical displacement, it is found that during the first revert process, the release of the surface tension can make the droplet with low potentials, small contact angles or small droplet volumes span from negative to positive. These results will be helpful for future operations encountered in sessile droplets under non-uniform electric fields towards the droplet microfluidics applications.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Muhamed Ashfak Kainikkara ◽  
Dipin S. Pillai ◽  
Kirti Chandra Sahu

AbstractThe electrohydrodynamics of a sessile droplet under the influence of periodic and steady electric fields in microgravity conditions is theoretically investigated using an inertial lubrication model. Previous studies have revealed that a freely suspended spherical droplet with unequal conductivity and permittivity ratios exhibits distinct dynamics under periodic and equivalent steady forcing in the root mean-square sense. However, it is unclear when (if at all) such distinct dynamics occur for periodic and equivalent steady forcing in the case of sessile droplets. The equivalence between periodic and steady forcing is shown to be governed by the interfacial charge buildup, which further depends on the competition between the charge relaxation and forcing timescales. A circulation-deformation map is introduced for the sessile droplet that acts as a guideline to achieve electric field-induced wetting or dewetting as the case may be. We also demonstrate that a droplet may be rendered either more or less wetting solely by tuning the forcing frequency.


Author(s):  
Cila Herman ◽  
Shinan Chang ◽  
Estelle Iacona

The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012008
Author(s):  
A I Garivalis ◽  
P Di Marco

Abstract The experimental outcomes of single bubbles nucleated and growth from a heated surface immersed in an electric field in high-quality microgravity level are presented. Data were obtained between September 2019 and January 2021 from the European experiment known as Reference mUltiscale Boiling Investigation (also multiscale boiling project), in which single bubbles of FC-72 were nucleated on a heated surface, on-board the International Space Station. In the experiments reported here, an electrostatic field is imposed in the boiling region by a washer-shaped electrode, centred above the nucleation site. The bubbles are heavily distorted by the electric stresses; in particular, contact angles and contact line length increase with electric field intensity. In the appropriate conditions, bubbles are continuously and regularly sucked towards the electrode, because they are attracted to regions of weaker electric field. The significant contribution of electro-convection is highlighted by the bubbles growth rate. These preliminary results contribute to the insight of the basics of boiling and show promising opportunities for practical application of electric fields in space.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Maryam Aliakbary Mianmahale ◽  
Arjomand Mehrabani-Zeinabad ◽  
Masoud Habibi Zare ◽  
Mahdi Ghadiri

AbstractIn this study, single-bubble electro-hydrodynamic effects on the two-phase laminar flow of water under electric field stress are investigated using numerical modeling. A 2D axisymmetric model is also developed to study the growth and departure of a single bubble. The phase-field method is applied to track the interphase between liquid and gas. The growth of the attached vapor bubble nucleus to a superheat at 7.0 °C and 8.5 °C are evaluated with 50° and 90° contact angles. The results show that the enhancement of the contact angle changes the velocity and temperature fields around the bubble. It is observed that the growing size and base of the bubble is increased with increasing the wall superheat, but the bubble departure diameter and time are decreased. The electric field results in raising the number of detached bubbles from the superheat at a certain time interval but decreasing the bubbles departure size. Additionally, the formation of stretched bubbles enhances the rate of heat flux and there is a non-linear relationship between the applied voltage and heat flux.


2001 ◽  
Vol 676 ◽  
Author(s):  
P. Chaoguang ◽  
J. Ederth ◽  
L. B. Kish ◽  
C. G. Granqvist

ABSTRACTNanocrystalline gold films were prepared by advanced gas deposition. Electric field induced effects on the film structure during and after deposition was investigated. A dc electric field in the range 2 ≤Ua ≤ 8 V/cm, was applied parallel to the substrate surface and led to changes of film microstructure and resistivity. In another set of experiments, films deposited at Ua = 0 were exposed to electric fields of similar strength after deposition. Film degradation could be understood from a mechanism consistent with a biased-percolation effect. Our results show that it is possible to control the film structure by varying the strength of an applied electric field.


Author(s):  
Kyle DeProw ◽  
Jeff Darabi

Due to its molecular polarity, a water droplet suspended in a dielectric medium experiences a force under the influence of an electric field. However, unlike a charged rigid particle, a water droplet undergoes a significant deformation due to its liquid state. Thus, the dynamic behavior of the water droplet cannot be fully analyzed without accounting for the interaction between the electric and fluid fields. In an effort to broaden our understanding of this phenomenon, a parallel plate electrode system was constructed inside a glass chamber. A water droplet was suspended in the glass chamber filled with insulated oil. After applying a high voltage across the plates, the droplet motion was recorded with a camera and analyzed using an image processing program. The effects of several parameters including, droplet size, droplet conductivity, and initial droplet position were investigated. Results obtained from this investigation help gain a better understanding of the droplet deformation and breakup mechanisms spanning several fields, some of which include oil-water separation, electrocoalescence, and electrospraying.


Author(s):  
S. Ravi Annapragada ◽  
Jayathi Y. Murthy ◽  
Suresh V. Garimella

Although many analytical, experimental and numerical studies have focused on droplet motion, the mechanics of the droplet while still in its static state, and just before motion starts, are not well understood. A study of static droplets would shed light on the threshold voltage (or critical inclination) for initiating electrically (or gravitationally) induced droplet motion. Before the droplet starts to move, the droplet shape changes such that the forces acting at the triple contact line balance the actuation forces. These contact line forces are governed by the contact angles along the contact line. The contact angle varies from an advancing angle at the leading edge to a receding angle at the trailing edge of the droplet. The present study seeks to understand and predict these forces at the triple contact line. The droplet shape, as well as the advancing and receding contact angles, is experimentally measured as a function of droplet size under the action of a gravitational force at different inclination angles. The advancing and receding contact angles are correlated with static contact angle and Bond number. A Volume of Fluid - Continuous Surface Force model with varying contact angles along the triple contact line is developed to predict the same. The model is first verified against a two-dimensional analytical solution. It is then used to simulate the shape of a sessile droplet on an incline at various angles of inclination and to determine the critical angle of inclination as a function of droplet size. Good agreement is found between experimental measurements and predictions. The contact line profile and contact area are also predicted. The contact area predictions based on a spherical-cap assumption are also compared against the numerical predictions.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document