scholarly journals Life of a single bubble growing within an electric field in microgravity: some preliminary results of the Reference mUltiscale Boiling Investigation

2021 ◽  
Vol 2116 (1) ◽  
pp. 012008
Author(s):  
A I Garivalis ◽  
P Di Marco

Abstract The experimental outcomes of single bubbles nucleated and growth from a heated surface immersed in an electric field in high-quality microgravity level are presented. Data were obtained between September 2019 and January 2021 from the European experiment known as Reference mUltiscale Boiling Investigation (also multiscale boiling project), in which single bubbles of FC-72 were nucleated on a heated surface, on-board the International Space Station. In the experiments reported here, an electrostatic field is imposed in the boiling region by a washer-shaped electrode, centred above the nucleation site. The bubbles are heavily distorted by the electric stresses; in particular, contact angles and contact line length increase with electric field intensity. In the appropriate conditions, bubbles are continuously and regularly sucked towards the electrode, because they are attracted to regions of weaker electric field. The significant contribution of electro-convection is highlighted by the bubbles growth rate. These preliminary results contribute to the insight of the basics of boiling and show promising opportunities for practical application of electric fields in space.

Author(s):  
Alexey A. Eronin ◽  
Stanislav P. Malyshenko ◽  
Anton I. Zhuravlev

Characteristics of heat transfer and hydrodynamics of boiling of liquid nitrogen on the surfaces with different types of non-uniformities at the presence of external electric fields are experimentally investigated. It is shown that the formation of field traps is a major mechanism of heat transfer enhancement. And this effect result in noticeable change of two-phase hydrodynamics in vicinity of heated surface.


Author(s):  
C. Herman ◽  
Z. Liu ◽  
E. Iacona

Boiling is an attractive solution to cooling problems in aerospace engineering because of the high heat transfer coefficients associated with phase change processes. Bubble detachment from an orifice shows some resemblance to bubble departure in boiling. The buoyancy force is responsible for bubble removal from the surface in terrestrial conditions. In space, with the gravity level being orders of magnitude smaller than on earth, bubbles formed during boiling can remain attached to the surface. As a result, the amount of heat removed from the heated surface can decrease, and it is difficult to predict reliably and accurately. The impact of electric fields is investigated with the aim to control bubble behavior and help bubble removal from the surface on which they form in reduced gravity. The behavior of single gas bubbles injected through an orifice into an electrically insulating liquid is studied in reduced gravity under the influence of static electric fields and the results of the experiments are compared with data obtained using a simplified model. The bubble life cycle was visualized in terrestrial conditions and reduced gravity. Bubble departure, volume and dimensions at detachment were measured and analyzed for different parameters such as gravity level, electric field magnitude and electric field uniformity. Results suggest that these parameters significantly affect bubble behavior, shape, volume and dimensions at detachment.


Author(s):  
Cila Herman ◽  
Shinan Chang ◽  
Estelle Iacona

The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 778 ◽  
Author(s):  
Jie Liu ◽  
Sheng Liu

Droplet microfluidic technology achieves precise manipulation of droplet behaviors by designing and controlling the flow and interaction of various incompatible fluids. The electric field provides a non-contact, pollution-free, designable and promising method for droplet microfluidics. Since the droplet behaviors in many industrial and biological applications occur on the contact surface and the properties of droplets and the surrounding environment are not consistent, it is essential to understand fundamentally the sessile droplet motion and deformation under various conditions. This paper reports a technique using the pin-plate electrode to generate non-uniform dielectrophoresis (DEP) force to control sessile droplets on hydrophobic surfaces. The electrohydrodynamics phenomena of the droplet motion and deformation are simulated using the phase-field method. It is found that the droplet moves along the substrate surface to the direction of higher electric field strength, and is accompanied with a certain offset displacement. In addition, the effect of pin electric potentials, surface contact angles and droplet volumes on the droplet motion and deformation are also studied and compared. The results show that higher potentials, more hydrophobic surfaces and larger droplet volumes exhibit greater droplet horizontal displacement and offset displacement. But for the droplet vertical displacement, it is found that during the first revert process, the release of the surface tension can make the droplet with low potentials, small contact angles or small droplet volumes span from negative to positive. These results will be helpful for future operations encountered in sessile droplets under non-uniform electric fields towards the droplet microfluidics applications.


Heat transfer by convection from a thin wire to a liquid was very appreciably increased by the application of a non-uniform electric field of several hundred kilovolts per centimetre which was confocal with the temperature field. This enhancement of the heat flux was much larger in a polar, slightly conducting liquid than in a practically ion-free liquid; the behaviour of a non-polar liquid which contained traces of a polar impurity was intermediate between the two. The polarity of the electric field affected the magnitude of the enhancement of the heat flux in the polar liquid and to a lesser extent also in the non-polar liquid which had a slight content of a polar contamination, but the direction of the field had no influence what­-soever on the enhancement of the heat flux in the ion-free liquid. With each of these three liquids the electrostatic field delayed and even suppressed the transition to nucleate boiling and therefore reduced the risk of ‘burn-out'. It appears that dielectrophoresis is primarily responsible for the increased convection, but that an ion transport phenomenon can make a further significant contribution. The observed polarity effects, in the presence of a minute concentration of ions, suggest that this could be an ion wind. For large values of the elec­trical number ( El ) the incremental increase of the Nusselt number ( Nu ) by dielectrophoresis can be of the order of one hundred.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Yannick Minet ◽  
Hans Zappe ◽  
Ingo Breunig ◽  
Karsten Buse

Whispering gallery resonators made out of lithium niobate allow for optical parametric oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical properties of this material. An important knob to tune and control these processes is, e.g., the linear electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial. Here, we study the average strength of the electric field in z-direction in the region of the optical mode for different configurations and geometries of lithium niobate whispering gallery resonators with the help of the finite element method. We find that in some configurations almost 100% is present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design considerations for future arrangements that may benefit from the strong electro-optic effect in bulk whispering gallery resonators made out of lithium niobate.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 45-52 ◽  
Author(s):  
R. E. Ergun ◽  
L. Andersson ◽  
C. W. Carlson ◽  
D. L. Newman ◽  
M. V. Goldman

Abstract. Direct observations of magnetic-field-aligned (parallel) electric fields in the downward current region of the aurora provide decisive evidence of naturally occurring double layers. We report measurements of parallel electric fields, electron fluxes and ion fluxes related to double layers that are responsible for particle acceleration. The observations suggest that parallel electric fields organize into a structure of three distinct, narrowly-confined regions along the magnetic field (B). In the "ramp" region, the measured parallel electric field forms a nearly-monotonic potential ramp that is localized to ~ 10 Debye lengths along B. The ramp is moving parallel to B at the ion acoustic speed (vs) and in the same direction as the accelerated electrons. On the high-potential side of the ramp, in the "beam" region, an unstable electron beam is seen for roughly another 10 Debye lengths along B. The electron beam is rapidly stabilized by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes. The "wave" region is physically separated from the ramp by the beam region. Numerical simulations reproduce a similar ramp structure, beam region, electrostatic turbulence region and plasma characteristics as seen in the observations. These results suggest that large double layers can account for the parallel electric field in the downward current region and that intense electrostatic turbulence rapidly stabilizes the accelerated electron distributions. These results also demonstrate that parallel electric fields are directly associated with the generation of large-amplitude electron phase-space holes and plasma waves.


Sign in / Sign up

Export Citation Format

Share Document