scholarly journals Internal Cylindrical Grinding Process of INCONEL® Alloy 600 Using Grinding Wheels with Sol–Gel Alumina and a Synthetic Organosilicon Polymer-Based Impregnate

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 115 ◽  
Author(s):  
Wojciech Kapłonek ◽  
Krzysztof Nadolny ◽  
Krzysztof Rokosz ◽  
Jocelyne Marciano ◽  
Mozammel Mia ◽  
...  

The development of modern jet engines would not be possible without dynamically developed nickel–chromium-based superalloys, such as INCONEL® The effective abrasive machining of above materials brings with it many problems and challenges, such as intensive clogging of the grinding wheel active surface (GWAS). This extremely unfavorable effect causes a reduction in the cutting ability of the abrasive tool as well as increase to grinding forces and friction in the whole process. The authors of this work demonstrate that introduction of a synthetic organosilicon polymer-based impregnating substance to the GWAS can significantly improve the effects of carrying out the abrasive process of hard-to-cut materials. Experimental studies were carried out on a set of a silicon-treated small-sized sol–gel alumina 1-35×10×10-SG/F46G10VTO grinding wheels. The set contained abrasive tools after the internal cylindrical grinding process of INCONEL® alloy 600 rings and reference abrasive tools. The condition of the GWAS after the impregnation process was studied, including imaging and measurements of its microgeometry using confocal laser scanning microscopy (CLSM), microanalysis of its elemental distribution using energy dispersive X-ray fluorescence (EDXRF), and the influence of impregnation process on the grinding temperature using infrared thermography (IRT). The obtained results confirmed the correctness of introduction of the impregnating substance into the grinding wheel structure, and it was possible to obtain an abrasive tool with a recommended characteristic. The main favorable features of treated grinding wheel concerning the reduction of adhesion between the GWAS and grinding process products (limitation of the clogging phenomenon) as well as reduction of friction in the grinding process, which has a positive effect on the thermal conditions in the grinding zone.

Author(s):  
Krzysztof Nadolny ◽  
Witold Habrat

This article offers an overview of 14 grinding wheel construction modifications used in the peripheral grinding of flat-shaped internal and external cylindrical surfaces, when grinding wheels made of conventional abrasive grains are used (Al2O3, sol-gel alumina, SiC, etc.). The text contains characteristics of grinding wheels with mixed grains, glass-crystalline bond, a centrifugal provision of the coolant into the grinding zone, aggregate grains, zones of different diameters, radial rough grinding zone, extended finish grinding segments, active surface macro- and micro-discontinuities, as well as multiporous, impregnated (self-lubricating), sandwich, sectional and segment grinding wheels. Each of the presented structural modifications was described by giving construction scheme, used abrasive grains, range of applications, advantages as well as disadvantages. Modifications of the grinding wheel construction allow for effective improvement of both the conditions and the results of the grinding process. A wide range of the known modifications allows for their proper selection depending on the required criteria of effective evaluation and taking into account the specific characteristics of conventional abrasive grains. As a result, it is possible to obtain positive influence on a number of technological factors of the grinding process. The described modifications of the grinding wheel structure can be also an inspiration and the basis for creating new solutions in this field.


Author(s):  
Krzysztof Nadolny ◽  
Witold Habrat

This article offers an overview of 11 grinding wheel construction modifications used in the peripheral grinding of flat, shaped, internal, and external cylindrical surfaces, when grinding wheels made of superabrasive grains are used (natural and synthetic diamonds, as well as mono- and microcrystalline cubic boron nitride). The text contains characteristics of grinding wheels with: bubble corundum grains, glass-crystalline bond, conic chamfer, zones of different diameters, a centrifugal provision of the coolant into the grinding zone, aggregate grains, zone-diversified structure, as well as impregnated (self-lubricating), multiporous, segment and “intelligent” grinding wheels. Each of the presented structural modifications were described by giving construction scheme, used abrasive grains, range of applications, advantages as well as disadvantages. Modifications of the grinding wheel construction allow for effective improvement of both the conditions and the results of the grinding process. A wide range of the known modifications allow for their proper selection depending on the required criteria of effective evaluation and taking into account the specific characteristics of superabrasive grains. As a result, it is possible to obtain positive influence on a number of technological factors of the grinding process. The described modifications of the grinding wheel structure can be also an inspiration and the basis for creating new solutions in this field.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2383 ◽  
Author(s):  
Krzysztof Nadolny ◽  
Seweryn Kieraś

This paper presents the results of experimental research concerning the possibility of supporting the cooling function during internal cylindrical grinding using the minimum quantity lubrication (MQL) method by additional delivery of a compressed cooled air (CCL) stream. The article presents a description of a hybrid method of cooling and lubrication of the grinding zone integrating centrifugal (through a grinding wheel) lubrication with the minimum quantity of lubricant and cooling with a compressed cooled air stream generated by a cold air gun (CAG). The methodology and results of experimental studies are also presented in detail, with the aim of determining the influence of the application of the hybrid method of cooling and lubrication of the machining zone on the course and results of the internal cylindrical grinding process of 100Cr6 steel in comparison with other methods of cooling and lubrication, as well as compared with dry grinding. The research results obtained using the described hybrid method of cooling and lubrication of the grinding zone are related to the results obtained under the conditions of centrifugal MQL method, cooling with a stream of CCA, cooling and lubrication with a stream of oil-in-water emulsion delivered using the flood method, and dry grinding. The efficiency of the grinding process is evaluated (based on the average grinding power Pav, grinding wheel volumetric wear Vs, material removal Vw, and grinding ratio G), along with the thermal conditions of the process (based on the analysis of thermograms recorded by infrared thermal imaging method), the textures of machined surfaces (based on microtopography measured by contact profilometry), the state of residual stress in the surface layers of workpieces (determined by X-ray diffraction method), and the state of the grinding wheels’ active surfaces after grinding (based on microtopography measured by laser triangulation and images recorded with a digital measuring microscope). The obtained results of the analyses show that the application of the hybrid method allows for the longest wheel life among the five compared grinding methods, which is about 2.7 times the life of grinding wheels working under the flood cooling and centrifugal MQL methods, and as much as 8 times the life of grinding wheels working under the conditions of CCA only and dry grinding.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 255 ◽  
Author(s):  
Kapłonek ◽  
Nadolny ◽  
Sutowska ◽  
Mia ◽  
Pimenov ◽  
...  

This work demonstrates that molybdenum disulfide can be successfully used as an impregnating substance that is introduced in the abrasive tool structure for improving its cutting properties and favorably affecting the effects of the abrasive process. For the experimental studies, a set of MoS2-treated small-sized grinding wheels with a technical designation 1-35×10×10×109A5X60L10VE0 PI-50 before and after the reciprocating internal cylindrical grinding process of rings made from INCONEL® alloy 718 was prepared. The condition of grinding wheel active surface was analyzed using an advanced observation measurement system based on stylus/optical profilometry, as well as confocal and electron microscopy. The obtained results confirmed the correctness of introduction of the impregnating substance into the grinding wheel structure, and it was possible to obtain an abrasive tool with a given characteristic.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
W. Kapłonek ◽  
K. Nadolny ◽  
W. Habrat

Selected issues related to SEM-imaging and image analysis of spherical melted chips formed during the grinding process are presented and discussed. The general characteristics of this specific group of machining products are given. Chip formation phenomena, as well as their overall morphology, are presented using selected examples of near- and semispherical melted chips occurring singly or concentrated in clusters on the grinding wheel surface after the machining process. Observation of the spherical melted chips and acquisition of their images were carried out for grinding wheel active surfaces with microcrystalline sintered corundum abrasive grains SG™after the internal cylindrical grinding process of a 100Cr6 steel and Titanium Grade 2® alloy by use of a scanning electron microscope, JEOL JSM-5500LV. Analysis of the obtained SEM micrographs was carried out by Image-Pro® Plus 5.0 software to determine the selected geometrical parameters describing the morphological features of the assessed chips.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2506
Author(s):  
Seweryn Kieraś ◽  
Marek Jakubowski ◽  
Krzysztof Nadolny

This paper describes simulation studies regarding the application of the centrifugal minimum quantity lubrication (MQL) method simultaneously with the delivery of a compressed cooled air (CCA) stream in the internal cylindrical grinding process. The idea of a new hybrid cooling and lubrication method connecting centrifugal (through a grinding wheel) lubrication by MQL with a CCA stream is described. The methodology of computational fluid dynamics (CFD) simulation studies, as well as the results of numerical simulations, are presented in detail. The aim of the simulations was to determine the most favourable geometrical and kinematic parameters of the system in the context of air-oil aerosol and CCA flow, as well as heat exchange. In the simulation, the variables were the grinding arbor geometrical parameters, the angle of CCA supply line outlets, and the grinding wheel and workpiece peripheral speed. As a result of the simulation studies, the most favourable geometrical parameters were designated, determining the orientation of the ends of the two CCA supply line outlets before and after the grinding zone, the number of openings in the drilled-out grinding arbor, and the influence of the grinding speed on the parameters of the coolant flow and temperature of objects in the grinding zone. In addition, the results of simulation tests made it possible to visualise the velocity vectors of the two-phase coolant flow in a complex system of air-oil aerosol delivery centrifugally through an open structure of a very fast rotating porous layer (grinding wheel), with an additional supply of CCA using an external cold air gun (CAG).


Author(s):  
Sebastian Barth ◽  
Michael Rom ◽  
Christian Wrobel ◽  
Fritz Klocke

The prediction of the grinding process result, such as the workpiece surface quality or the state of the edge zone depending on the used grinding wheel is still a great challenge for today's manufacturers and users of grinding tools. This is mainly caused by an inadequate predictability of force and temperature affecting the process. The force and the temperature strongly depend on the topography of the grinding wheel, which comes into contact with the workpiece during the grinding process. The topography of a grinding wheel mainly depends on the structure of the grinding wheel, which is determined by the recipe-dependent volumetric composition of the tool. So, the structure of a grinding tool determines its application behavior strongly. As result, the knowledge-based prediction of the grinding wheel topography and its influence on the machining behavior will only be possible if the recipe-dependent grinding wheel structure is known. This paper presents an innovative approach for modeling the grinding wheel structure and the resultant grinding wheel topography. The overall objective of the underlying research work was to create a mathematical-generic grinding tool model in which the spatial arrangement of the components, grains, bond, and pores, is simulated in a realistic manner starting from the recipe-dependent volumetric composition of a grinding wheel. This model enables the user to determine the resulting grinding wheel structure and the grinding wheel topography of vitrified and synthetic resin-bonded cubic boron nitride (CBN) grinding wheels depending on their specification and thus to predict their application behavior. The originality of the present research results is a generic approach for the modeling of grinding tools, which takes into account the entire grinding wheel structure to build up the topography. Therefore, original mathematical methods are used. The components of grinding wheels are analyzed, and distribution functions of the component's positions in the tools are determined. Thus, the statistical character of the grinding wheel structure is taken into account in the developed model. In future, the presented model opens new perspectives in order to optimize and to increase the productivity of grinding processes.


2016 ◽  
Vol 1136 ◽  
pp. 90-96 ◽  
Author(s):  
Ali Zahedi ◽  
Bahman Azarhoushang ◽  
Javad Akbari

Laser-dressing has been shown to be a promising method for overcoming some shortcomings of the conventional methods such as high wear of the dressing tool and its environmental concerns, high induced damage to the grinding wheel, low form flexibility and low speed. In this study, a resin bonded cBN grinding wheel has been dressed with a picosecond Yb:YAG laser. The efficiency of the laser-dressed grinding wheels has been compared with the conventionally dressed and sharpened grinding wheels through execution of cylindrical grinding tests on a steel workpiece (100Cr6). The conventional dressing and sharpening processes have been performed by using a vitrified SiC wheel and vitrified alumina blocks, respectively. By recording the spindle power values along with the surface topography measurements of the ground workpieces and the extraction of two roughness parameters (the average roughness Ra and the average roughness depth Rz), it is possible to provide an assessment of the cylindrical grinding process with different dressing conditions i.e. laser-dressing and conventional dressing. Accordingly, a strategy will be proposed to optimize the cylindrical grinding process with laser-dressed wheels regarding the forces and roughness values.


2005 ◽  
Vol 291-292 ◽  
pp. 213-220 ◽  
Author(s):  
Shao Hui Yin ◽  
Wei Min Lin ◽  
Yoshihiro Uehara ◽  
Shinya MORITA ◽  
Hitoshi Ohmori ◽  
...  

In V-groove ELID grinding process, to achieve optimal grinding performance and satisfactory surface quality and profile accuracy, metal bonded diamond grinding wheels need to be carefully sharpened. In this paper, we applied the proposed new micro-truing method consisting of electro-discharge truing and electrolysis-assisted mechanical truing to sharpen the edge of large grinding wheels. The minimum wheel tip radiuses of 6.3 and 8.5µm were achieved for the #4000 and #20000 grinding wheels. The truing mechanisms and sharpening performance are also discussed.


Author(s):  
Markus Weiß ◽  
Fritz Klocke ◽  
Sebastian Barth ◽  
Matthias Rasim ◽  
Patrick Mattfeld

In this paper, an innovative approach for the description of the functional properties of a grinding wheel surface is discussed. First, the state of the art in the description of grinding wheel topographies is summarized. Furthermore, the fundamentals for a new approach for the quantitative description of grinding wheel topographies are provided. In order to analyze the functional properties of a grinding wheel's topography depending on its specification, grinding experiments were carried out. For the experimental investigations vitrified, synthetic resin bonded and electroplated grinding wheels with varied compositions were analyzed. During the experiments, the topographies of the investigated grinding wheels have been analyzed by means of the topotool in detail. The developed software tool allows a detailed description of the kinematic cutting edges depending on the grinding process parameters and the grinding wheel specification. In addition to the calculation of the number of kinematic cutting edges and the area per cutting edge, a differentiation of the cutting edge areas in normal and tangential areas of the grinding wheel's circumferential direction is implemented. Furthermore, the topotool enables to analyze the kinematic cutting edges shape by calculating the angles of the grain in different directions. This enables a detailed analysis and a quantitative comparison of grinding wheel topographies related to different grinding wheel specifications. In addition, the influence of the dressing process and wear conditions to the grinding wheel topography can be evaluated. The new approach allows a better characterization of the contact conditions between grinding wheel and workpiece. Hence, the impact of a specific topography on the grinding process behavior, the generated grinding energy distribution, and the grinding result can be revealed.


Sign in / Sign up

Export Citation Format

Share Document