scholarly journals Advances in Liquid Metal-Enabled Flexible and Wearable Sensors

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 200 ◽  
Author(s):  
Yi Ren ◽  
Xuyang Sun ◽  
Jing Liu

Sensors are core elements to directly obtain information from surrounding objects for further detecting, judging and controlling purposes. With the rapid development of soft electronics, flexible sensors have made considerable progress, and can better fit the objects to detect and, thus respond to changes more sensitively. Recently, as a newly emerging electronic ink, liquid metal is being increasingly investigated to realize various electronic elements, especially soft ones. Compared to conventional soft sensors, the introduction of liquid metal shows rather unique advantages. Due to excellent flexibility and conductivity, liquid-metal soft sensors present high enhancement in sensitivity and precision, thus producing many profound applications. So far, a series of flexible and wearable sensors based on liquid metal have been designed and tested. Their applications have also witnessed a growing exploration in biomedical areas, including health-monitoring, electronic skin, wearable devices and intelligent robots etc. This article presents a systematic review of the typical progress of liquid metal-enabled soft sensors, including material innovations, fabrication strategies, fundamental principles, representative application examples, and so on. The perspectives of liquid-metal soft sensors is finally interpreted to conclude the future challenges and opportunities.

Author(s):  
Priya Yadav ◽  
Pranjeet Das ◽  
Ravi Kumar Malhotra

E-commerce is process of doing business through computer networks. Advances in wireless network technology and the continuously increasing number of users of mobile latter on make an ideal platform for offering various high utilityservices in just a snap of a finger to the mobile users and give pace to the rapid development of E-Commerce in India.E-commerce is considered an excellent alternative for companies to reach new customersbut the fact that has hindered the growth of e-commerce is security. Security is the challenge facing e-commerce today and there is still a lot of advancement made in the field of securityfor increasing the use of e-commerce in developing countries the B2B e-commerce is implemented for improving access to global markets for firms in developing countries. With the special characteristics and constraints of mobile terminals and wireless networks and the context, situations and circumstances that people use their hand-held terminalswhich will ultimately fuel explosive ecommerce growth in India This paper highlights the various key challenges and opportunities which Indian e-commerce industry may face in the upcoming years. And also discuss challenges in electronic commerce transactions.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
H Hilderink

Abstract The four-year Public Health Foresight Study (VTV) provides insight into the most important societal challenges for public health and health care in the Netherlands. The seventh edition of the Dutch Public Health Foresight study was published in 2018, with an update in 2020. In this update a business-as-usual or Trend Scenario was developed using 2018 as a base year. In the trend scenario demographic and epidemiological projections have been used to depict the future trends regarding ageing, health, disease, health behaviors, health expenditures and health inequalities. Next, these trends are used to identify the most important future challenges and opportunities for public health. In the 2020 update, special attentions is given to climate change and the local living environment and their impacts and interaction with public health outcomes. Trends in lifestyle-related lifestyle show both positive (smoking prevalence) and negative (overweight prevalence) future developments. Dementia will be the leading cause of mortality and disease burden in 2040 by far. Health care expenditures will double by 2040, with cancers showing the most rapid growth of all disease groups. The insights of this study are directly used as input for the National Health Policy Memorandum and for the National Prevention Accord.


Ceramics ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 20-40
Author(s):  
Ambreen Nisar ◽  
Cheng Zhang ◽  
Benjamin Boesl ◽  
Arvind Agarwal

Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densification tool to the fabrication of complex-shaped components, advanced functional materials, functionally gradient materials, interconnected materials, and porous filter materials for real-life applications. The broader application achieved by modification of the SPS technique can provide an alternative to conventional powder metallurgy methods as a scalable manufacturing process. The future challenges and opportunities in this emerging research field have also been identified and presented.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4130
Author(s):  
Eric Rasmussen ◽  
Daniel Guo ◽  
Vybhav Murthy ◽  
Rachit Mishra ◽  
Cameron Riviere ◽  
...  

The field of soft robotics has attracted the interest of the medical community due to the ability of soft elastic materials to traverse the abnormal environment of the human body. However, sensing in soft robotics has been challenging due to the sensitivity of soft sensors to various loading conditions and the nonlinear signal responses that can arise under extreme loads. Ideally, soft sensors should provide a linear response under a specific loading condition and provide a different response for other loading directions. With these specifications in mind, our team created a soft elastomeric sensor designed to provide force feedback during cardiac catheter ablation surgery. Analytical and computational methods were explored to define a relationship between resistance and applied force for a semicircular, liquid metal filled channel in the soft elastomeric sensor. Pouillet’s Law is utilized to calculate the resistance based on the change in cross-sectional area resulting from various applied pressures. FEA simulations were created to simulate the deformation of the sensor under various loads. To confirm the validity of these simulations, the elastomer was modeled as a neo-Hookean material and the liquid metal was modeled as an incompressible fluid with negligible shear modulus under uniaxial compression. Results show a linearly proportional relationship between the resistance of the sensor and the application of a uniaxial force. Altering the direction of applied force results in a quadratic relationship between total resistance and the magnitude of force.


2017 ◽  
Vol 7 (2) ◽  
pp. 20160151 ◽  
Author(s):  
Angela Logan ◽  
Michael P. Murphy

Our understanding of the role of mitochondria in biomedical sciences has expanded considerably over the past decade. In addition to their well-known metabolic roles, mitochondrial are also central to signalling for various processes through the generation of signals such as ROS and metabolites that affect cellular homeostasis, as well as other processes such as cell death and inflammation. Thus, mitochondrial function and dysfunction are central to the health and fate of the cell. Consequently, there is considerable interest in better understanding and assessing the many roles of mitochondria. Furthermore, there is also a growing realization that mitochondrial are a promising drug target in a wide range of pathologies. The application of interdisciplinary approaches at the interface between chemistry and biology are opening up new opportunities to understand mitochondrial function and in assessing the role of the organelle in biology. This work and the experience thus gained are leading to the development of new classes of therapies. Here, we overview the progress that has been made to date on exploring the chemical biology of the organelle and then focus on future challenges and opportunities that face this rapidly developing field.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3822 ◽  
Author(s):  
Josie Hughes ◽  
Fumiya Iida

Wearable devices which monitor physiological measurements are of significant research interest for a wide number of applications including medicine, entertainment, and wellness monitoring. However, many wearable sensing systems are highly rigid and thus restrict the movement of the wearer, and are not modular or customizable for a specific application. Typically, one sensor is designed to model one physiological indicator which is not a scalable approach. This work aims to address these limitations, by developing soft sensors and including conductive particles into a silicone matrix which allows sheets of soft strain sensors to be developed rapidly using a rapid manufacturing process. By varying the morphology of the sensor sheets and electrode placement the response can be varied. To demonstrate the versatility and range of sensitivity of this base sensing material, two wearable sensors have been developed which show the detection of different physiological parameters. These include a pressure-sensitive insole sensor which can detect ground reaction forces and a strain sensor which can be worn over clothes to allow the measurements of heart rate, breathing rate, and gait.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhangjie Fu ◽  
Jingnan Yu ◽  
Guowu Xie ◽  
Yiming Chen ◽  
Yuanhang Mao

With the rapid development of the network and the informatization of society, how to improve the accuracy of information is an urgent problem to be solved. The existing method is to use an intelligent robot to carry sensors to collect data and transmit the data to the server in real time. Many intelligent robots have emerged in life; the UAV (unmanned aerial vehicle) is one of them. With the popularization of UAV applications, the security of UAV has also been exposed. In addition to some human factors, there is a major factor in the UAV’s endurance. UAVs will face a problem of short battery life when performing flying missions. In order to solve this problem, the existing method is to plan the path of UAV flight. In order to find the optimal path for a UAV flight, we propose three cost functions: path security cost, length cost, and smoothness cost. The path security cost is used to determine whether the path is feasible; the length cost and smoothness cost of the path directly affect the cost of the energy consumption of the UAV flight. We proposed a heuristic evolutionary algorithm that designed several evolutionary operations: substitution operations, crossover operations, mutation operations, length operations, and smoothness operations. Through these operations to enhance our build path effect. Under the analysis of experimental results, we proved that our solution is feasible.


Sign in / Sign up

Export Citation Format

Share Document