scholarly journals Molecule Sensitive Optical Imaging and Monitoring Techniques—A Review of Applications in Micro-Process Engineering

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 353 ◽  
Author(s):  
Marcel Nachtmann ◽  
Julian Deuerling ◽  
Matthias Rädle

This paper provides an overview of how molecule-sensitive, spatially-resolved technologies can be applied for monitoring and measuring in microchannels. The principles of elastic light scattering, fluorescence, near-infrared, mid-infrared, and Raman imaging, as well as combination techniques, are briefly presented, and their advantages and disadvantages are explained. With optical methods, images can be acquired both scanning and simultaneously as a complete image. Scanning technologies require more acquisition time, and fast moving processes are not easily observable. On the other hand, molecular selectivity is very high, especially in Raman and mid-infrared (MIR) scanning. For near-infrared (NIR) images, the entire measuring range can be simultaneously recorded with indium gallium arsenide (InGaAs) cameras. However, in this wavelength range, water is the dominant molecule, so it is sometimes necessary to use complex learning algorithms that increase the preparation effort before the actual measurement. These technologies excite molecular vibrations in a variety of ways, making these methods suitable for specific products. Besides measurements of the fluid composition, technologies for particle detection are of additional importance. With scattered light techniques and evaluation according to the Mie theory, particles in the range of 0.2–1 µm can be detected, and fast growth processes can be observed. Local multispectral measurements can also be carried out with fiber optic-coupled systems through small probe heads of approximately 1 mm diameter.

2021 ◽  
Vol 13 (4) ◽  
pp. 741
Author(s):  
Shuowen Yang ◽  
Xiang Yan ◽  
Hanlin Qin ◽  
Qingjie Zeng ◽  
Yi Liang ◽  
...  

Hyperspectral imaging (HSI) has been widely investigated within the context of computational imaging due to the high dimensional challenges for direct imaging. However, existing computational HSI approaches are mostly designed for the visible to near-infrared waveband, whereas less attention has been paid to the mid-infrared spectral range. In this paper, we report a novel mid-infrared compressive HSI system to extend the application domain of mid-infrared digital micromirror device (MIR-DMD). In our system, a modified MIR-DMD is combined with an off-the-shelf infrared spectroradiometer to capture the spatial modulated and compressed measurements at different spectral channels. Following this, a dual-stage image reconstruction method is developed to recover infrared hyperspectral images from these measurements. In addition, a measurement without any coding is used as the side information to aid the reconstruction to enhance the reconstruction quality of the infrared hyperspectral images. A proof-of-concept setup is built to capture the mid-infrared hyperspectral data of 64 pixels × 48 pixels × 100 spectral channels ranging from 3 to 5 μm, with the acquisition time within one minute. To the best of our knowledge, this is the first mid-infrared compressive hyperspectral imaging approach that could offer a less expensive alternative to conventional mid-infrared hyperspectral imaging systems.


2007 ◽  
Vol 50 (2-3) ◽  
pp. 211-216 ◽  
Author(s):  
S.V. Bandara ◽  
S.D. Gunapala ◽  
D.Z. Ting ◽  
J.K. Liu ◽  
C.J. Hill ◽  
...  

1993 ◽  
Vol 1 (2) ◽  
pp. 99-108 ◽  
Author(s):  
P. Robert ◽  
M.F. Devaux ◽  
A. Qannari ◽  
M. Safar

Multivariate data treatments were applied to mid and near infrared spectra of glucose, fructose and sucrose solutions in order to specify near infrared frequencies that characterise each carbohydrate. As a first step, the mid and near infrared regions were separately studied by performing Principal Component Analyses. While glucose, fructose and sucrose could be clearly identified on the similarity maps derived from the mid infrared spectra, only the total sugar content of the solutions was observed when using the near infrared region. Characteristic wavelengths of the total sugar content were found at 2118, 2270 and 2324 nm. In a second step, the mid and near infrared regions were jointly studied by a Canonical Correlation Analysis. As the assignments of frequencies are generally well known in the mid infrared region, it should be useful to study the relationships between the two infrared regions. Thus, the canonical patterns obtained from the near infrared spectra revealed wavelengths that characterised each carbohydrate. The OH and CH combination bands were observed at: 2088 and 2332 nm for glucose, 2134 and 2252 nm for fructose, 2058 and 2278 nm for sucrose. Although a precise assignment of the near infrared bands to chemical groups within the molecules was not possible, the present work showed that near infrared spectra of carbohydrates presented specific features.


2006 ◽  
Author(s):  
Burak Alacam ◽  
Birsen Yazici ◽  
Xavier Intes ◽  
Shoko Nioka ◽  
Britton Chance

Oceans ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 315-329
Author(s):  
Antoine Collin ◽  
Mark Andel ◽  
David Lecchini ◽  
Joachim Claudet

Shallow coral reefs ensure a wide portfolio of ecosystem services, from fish provisioning to tourism, that support more than 500 million people worldwide. The protection and sustainable management of these pivotal ecosystems require fine-scale but large-extent mapping of their 3D composition. The sub-metre spaceborne imagery can neatly produce such an expected product using multispectral stereo-imagery. We built the first 3D land-sea coral reefscape mapping using the 0.3 m superspectral WorldView-3 stereo-imagery. An array of 13 land use/land cover and sea use/sea cover habitats were classified using sea-, ground- and air-truth data. The satellite-derived topography and bathymetry reached vertical accuracies of 1.11 and 0.89 m, respectively. The value added of the eight mid-infrared (MIR) channels specific to the WorldView-3 was quantified using the classification overall accuracy (OA). With no topobathymetry, the best combination included the eight-band optical (visible + near-infrared) and the MIR8, which boosted the basic blue-green-red OA by 9.58%. The classes that most benefited from this MIR information were the land use “roof” and land cover “soil” classes. The addition of the satellite-derived topobathymetry to the optical+MIR1 produced the best full combination, increasing the basic OA by 9.73%, and reinforcing the “roof” and “soil” distinction.


Sign in / Sign up

Export Citation Format

Share Document