scholarly journals Shear Thickening Polishing of Quartz Glass

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 956
Author(s):  
Qi Shao ◽  
Shixiang Duan ◽  
Lin Fu ◽  
Binghai Lyu ◽  
Ping Zhao ◽  
...  

Quartz glass is a typical optical material. In this research, colloidal silica (SiO2) and colloidal cerium oxide (CeO2) are used as abrasive grains to polish quartz glass in the shear thickening polishing (STP) process. The STP method employs the shear-thickening mechanism of non-Newtonian power-law fluid to achieve high-efficiency and high-quality polishing. The different performance in material removal and surface roughness between SiO2 and CeO2 slurries was analyzed. The influence of the main factors including polishing speed, abrasive concentration, and pH value on the MRR, workpiece surface roughness, and the surface topography was discussed. Two different slurries can both achieve fine quartz surface in shear thickening polishing with the polishing speed 100 rpm, and pH value 8. The quartz glass surface roughness Ra decreases from 120 ± 10 to 2.3 nm in 14 minutes’ polishing with 8 wt% 80 nm SiO2 slurry, and the MRR reaches 121.6 nm/min. The quartz glass surface roughness Ra decreases from 120 ± 10 to 2.1 nm in 12 minutes polishing by 6 wt% 100 nm CeO2 slurry and the MRR reaches 126.2 nm/min.

2010 ◽  
Vol 34 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Akram Saad ◽  
Robert Bauer ◽  
Andrew Warkentin

This paper investigates the effect of both single-point and diamond-roll dressing techniques on the workpiece surface roughness in grinding. Two empirical surface roughness models are studied – one that incorporates single-point dressing parameters, and another that incorporates diamond-roll dressing parameters. For the experimental conditions used in this research, the corresponding empirical model coefficients are found to have a linear relationship with the inverse of the overlap ratio for single-point dressing and the interference angle for diamond-roll dressing. The resulting workpiece surface roughness models are then experimentally validated for different depths of cut, workpiece speeds and dressing conditions. In addition, the models are used to derive a relationship between overlap ratio for single-point dressing, and interference angle for diamond-roll dressing such that both dressing techniques produce a similar surface finish for a given material removal rate.


Author(s):  
Xiaokang Chen ◽  
Jianping Zhou ◽  
Kedian Wang ◽  
Yan Xu

Short electric arc machining is a recently developed high-efficiency electrical discharge machining technology. Material removal rate, tool mass wear ratio ([Formula: see text]), and workpiece surface roughness ( Ra) are important indexes used to evaluate the machining performance of short electric arc machining. In order to obtain better machining effect, the nickel-based superalloy GH4169 is machined by graphite in this article. The influence of voltage, duty cycle, and flushing pressure on short electric arc machining performance is then investigated under different tool polarity conditions. Experimental results show that higher material removal rate and lower [Formula: see text] can be obtained by negative polarity machining, while positive polarity machining can produce better surface quality. To investigate the cause of this difference, the surface integrity of GH4169 machined by different tool polarity is studied from macro and micro perspectives.


2016 ◽  
Vol 1136 ◽  
pp. 490-493 ◽  
Author(s):  
Min Li ◽  
Bing Hai Lyu ◽  
Ju Long Yuan ◽  
Ping Zhao

Shear-thickening polishing (STP) technology was used on ultraprecision machining of Si3N4 ceramics. The STP slurry with diamond abrasives was prepared for STP process and its rheological property was studied. The polishing performance of Si3N4 ceramics with STP was analyzed. Results show that STP slurry with diamond abrasives exhibits non-Newtonian power-law fluid characteristics with shear-thickening effect. As using STP slurry with abrasive particle size of 0.2 μm, the material removal rate changed from 4.22 to 4.05 μm/h after 60 mins ́ polishing; and decreased from 3.88 to 3.75 μm/h after 120 mins ́ polishing. The average surface roughness reduced from Ra 107.2 to Ra 6.5 nm after 120 mins ́ polishing.


2014 ◽  
Vol 1017 ◽  
pp. 92-97 ◽  
Author(s):  
Die Zhang ◽  
Yun Huang ◽  
Xian Yin ◽  
Li Qi Zhou ◽  
Yu Hang Yang ◽  
...  

Abrasive belt grinding experiments of ZrO2Engineering Ceramics are carried out by using 4 different abrasive belts. The orthogonal test with zirconia-corundum belt was to get the best grinding parameter, the amount of material removal workpiece surface roughness and belt wear were measured to get the best grinding parameter.In this paper,the influence of abrasive belt granularity and different grinding parameters to grinding efficiency and workpiece surface quality throughout the process of grinding ZrO2Engineering Ceramics was analyzed. Analysis wear mechanism of engineering ceramics based on the Abrasive cutting model by observing the surface morphology. The results show that increasing the grinding force or the abrasive belt granularity can decrease the workpiece surface roughness;With the abrasive belt speed or grinding force increasing,the material removal rate and the wear ratio to some extent, but brittle fracture is occued easily on its surface when exceeds the critical value; When the abrasive belt speed is 19m/s,the grinding force is 15N and the abrasive belt granularity is 120#, ZrO2Engineering Ceramics grinding effects reach the best.


2010 ◽  
Vol 154-155 ◽  
pp. 1739-1743
Author(s):  
Wei Li ◽  
Qian Jun Tian

In this paper, the mechanism of Electrolysis In-process Dressing (ELID) lapping process using new BCB (bamboo charcoal bonded) abrasive wheel is researched. Some experiments of machining for silicon wafers were carried out for exploring the effect of some machining process parameters on material removal rate and surface roughness. Experiments show that: Material removal rate and machined workpiece surface roughness are increased with increase of the lapping wheel’s rotation speed and processing loading; The machined workpiece surface quality is affected with the lapping wheel surface condition, due to the abrasives are trued by electrolysis dressing in the lapping process, therefore the BCB lapping wheel always keeps better machining condition to obtain excellent machined workpiece surface quality efficiently.


2007 ◽  
Vol 336-338 ◽  
pp. 1458-1460 ◽  
Author(s):  
Xin Hong Yang ◽  
Yu Min Zhang ◽  
Jie Cai Han

An experimental investigation is carried out to machine SiC ceramic material through method of high speed plane lapping with fixed abrasive. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasive and the lapping pressure for the brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic material in ductile mode with a high efficiency and a low cost using W3.5 grit under a lapping pressure of 0.1MPa and then a smooth surface with surface roughness of Ra 2.4nm can be achieved.


2006 ◽  
Vol 315-316 ◽  
pp. 304-308 ◽  
Author(s):  
Yan Wu ◽  
Bo Zhao ◽  
Xun Sheng Zhu

Based on the grain movement model of ultrasonic grinding, models representing the grinding force of single abrasive and the material removal rate (MRR) are deduced and verified. Mechanism of high efficiency material removal in work lateral ultrasonic vibration grinding (WLUVG) was analyzed. The MRR of fine-crystalline ZrO2 ceramics in WLUVG and conventional grinding (CG) with diamond wheel were researched experimentally in this work. The effects on the MRR, the surface roughness and microstructure of the process parameters and the size of abrasive are measured. It has been concluded that: (1) the MRR in ultrasonic grinding process is two times as large as that of in CG. (2) any increase in the amount of energy imparted to the workpiece in terms of the average diameter of grains, grinding depth both in with and without ultrasonic grinding, will result in an increase in the MRR and the surfaces roughness. (3) the ultrasonic grinding surface had no spur and build-up edge and its surface roughness was smaller than CG significantly. Surface quality of vibration grinding is superior to that of CG, it is easy for ultrasonic vibration grinding that material removal mechanism is ductile mode grinding.


2013 ◽  
Vol 690-693 ◽  
pp. 2179-2184 ◽  
Author(s):  
Wei Li ◽  
Qiu Sheng Yan ◽  
Jia Bin Lu ◽  
Ji Sheng Pan

In order to remove the cutting marks on the cutting surface of 6H-SiC single crystal wafer, experiments were conducted to investigate the effect of the abrasive characteristics (types, grain size, concentration and mixed abrasives) on the lapping performance of 6H-SiC single crystal wafer, then the removal mechanism of the abrasive grains in the lapping process was studied. Results indicate that the abrasives with larger grain size and higher hardness can result in a higher material removal rate while the abrasives with smaller grain size and lower hardness can achieve a lower surface roughness value. When the concentration of the abrasives is 7.69 wt%, a good lapping effect was obtained. Lower surface roughness value Ra can be obtained with a high material removal rate by using certain proportion mixed abrasives. Selecting appropriate abrasives can obtain a high surface quality of 6H-SiC wafer with a high efficiency.


2012 ◽  
Vol 565 ◽  
pp. 3-9 ◽  
Author(s):  
Yong Bo Wu ◽  
L. Jiao ◽  
Hui Ru Guo ◽  
M. Fujimoto ◽  
K. Shimada

This paper aims to develop an alternative novel technique for the high efficiency and ultrafine surface finishing of fused silica glass. A semi-fixed abrasive tool named MCF (magnetic compound fluid) wheel is produced by distributing a certain volume of MCF slurry uniformly over the whole circumference surface of ring-shaped permanent magnets. An experimental rig is constructed in house followed by experimental investigations involving effects of the MCF wheel construction and process parameters on the material removal and work-surface roughness. As a result, the performance of the developed MCF wheel in the surface finishing of fused silica glass has been confirmed, and the appropriate wheel construction and process parameters have been determined in terms of the material removal rate, the flatness of polishing area and the surface roughness, showing an extremely smooth work-surface with surface roughness of Ra0.92nm has been achieved successfully in the current work.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 544
Author(s):  
Tianchen Zhao ◽  
Qianfa Deng ◽  
Cheng Zhang ◽  
Kaiping Feng ◽  
Zhaozhong Zhou ◽  
...  

Silicon wafer with high surface quality is widely used as substrate materials in the fields of micromachines and microelectronics, so a high-efficiency and high-quality polishing method is urgently needed to meet its large demand. In this paper, a dielectrophoresis polishing (DEPP) method was proposed, which applied a non-uniform electric field to the polishing area to slow down the throw-out effect of centrifugal force, thereby achieving high-efficiency and high-quality polishing of silicon wafers. The principle of DEPP was described. Orthogonal experiments on important polishing process parameters were carried out. Contrast polishing experiments of silicon wafer were conducted. The orthogonal experimental results showed that the influence ratio of electric field intensity and rotation speed on material removal rate (MRR) and surface roughness was more than 80%. The optimal combination of process parameters was electric field intensity 450 V/mm, rotation speed 90 rpm, abrasive concentration 30 wt%, size of abrasive particle 80 nm. Contrast polishing experiments indicated that the MRR and material removal uniformity of DEPP were significantly better than traditional chemical mechanical polishing (CMP). Compared with the traditional CMP, the MRR of DEPP was increased by 17.6%, and the final surface roughness of silicon wafer reached Ra 0.31 nm. DEPP can achieve high-efficiency and high-quality processing of silicon wafer.


Sign in / Sign up

Export Citation Format

Share Document