scholarly journals Overview of 3D-Printed Silica Glass

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 81
Author(s):  
Han Zhang ◽  
Long Huang ◽  
Mingyue Tan ◽  
Shaoqing Zhao ◽  
Hua Liu ◽  
...  

Not satisfied with the current stage of the extensive research on 3D printing technology for polymers and metals, researchers are searching for more innovative 3D printing technologies for glass fabrication in what has become the latest trend of interest. The traditional glass manufacturing process requires complex high-temperature melting and casting processes, which presents a great challenge to the fabrication of arbitrarily complex glass devices. The emergence of 3D printing technology provides a good solution. This paper reviews the recent advances in glass 3D printing, describes the history and development of related technologies, and lists popular applications of 3D printing for glass preparation. This review compares the advantages and disadvantages of various processing methods, summarizes the problems encountered in the process of technology application, and proposes the corresponding solutions to select the most appropriate preparation method in practical applications. The application of additive manufacturing in glass fabrication is in its infancy but has great potential. Based on this view, the methods for glass preparation with 3D printing technology are expected to achieve both high-speed and high-precision fabrication.

Author(s):  
Xiangfan Chen ◽  
Wenzhong Liu ◽  
Biqin Dong ◽  
Henry Oliver T. Ware ◽  
Hao F. Zhang ◽  
...  

The emerging 3D printing technology has the potential to transform manufacturing customized optical elements, which currently heavily relies on the time-consuming and costly polishing and grinding processes. However, the inherent speed-accuracy trade-off seriously constraints the practical applications of 3D printing technology in optical realm. In addressing this issue, here, we report a new method featuring a significantly faster fabrication speed, at 24.54 mm3/h, without compromising the fabrication accuracy or surface finish required to 3D-print customized optical components. We demonstrated a high-speed 3D printing process with deep subwavelength (sub-10 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from the grayscale photopolymerization and the meniscus equilibrium post-curing methods. Fabricating a customized aspheric lens with 5 mm in height and 3 mm in diameter could be accomplished in less than four hours. The 3D-printed singlet aspheric lens demonstrated a maximal imaging resolution of 2.19 μm with low field distortion less than 0.13% across a 2-mm field of view. This work demonstrates the potential of 3D printing for rapid manufacturing of optical components.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Hyeunwoo Choi ◽  
Anna Seo ◽  
Jongmin Lee

Currently, research based on the technology and applications of 3D printing is being actively pursued. 3D printing technology, also called additive manufacturing, is widely and increasingly used in the medical field. This study produced custom casts for the treatment of mallet finger using plaster of Paris, which was traditionally used in clinical practice, and 3D printing technology, and evaluated their advantages and disadvantages for patients by conducting a wearability assessment. Mallet finger casts produced using plaster of Paris, when incorrectly made, can result in skin necrosis and other problems for patients. These problems can be mitigated, however, by creating casts using 3D printing technology. Additionally, plaster casts or ready-made alternatives can be inconvenient with respect to rapid treatment of patients. In contrast, 3D-printed casts appear to provide patients with appropriate treatment and increase their satisfaction because they are small in size, custom-made for each patient, and can be quickly made and immediately applied in clinical practice.


Author(s):  
Micheal Omotayo Alabi

This article describes how 3D printing technology, also referred to as additive manufacturing (AM), is a process of creating a physical object from 3-dimensional digital model layers upon layers. 3D printing technologies have been identified as an emerging technology of the 21st century and are becoming popular around the world with a wide variety of potential application areas such as healthcare, automotive, aerospace, manufacturing, etc. Big Data is a large amount of imprecise data in a variety of formats which is generated from different sources with high-speed. Recently, Big Data and 3D printing technologies is a new research area and have been identified as types of technologies that will launch the fourth industrial revolution (Industry 4.0). As Big Data and 3D printing technology is wide spreading across different sectors in the era of industry 4.0, the healthcare sector is not left out of the vast development in this field; for instance, the Big Data and 3D printing technologies providing needed tools to support healthcare systems to accumulate, manage, analyse large volume of data, early disease detection, 3D printed medical implant, 3D printed customized titanium prosthetic, etc. Therefore, this article presents the recent trends in 3D printing technologies, Big Data and Industry 4.0; including the benefits and the application areas of these technologies. Emerging and near future application areas of 3D printing, and possible future research areas in 3D printing and Big Data technologies as relating to industry 4.0.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20507-20518
Author(s):  
Petr Panuška ◽  
Zuzana Nejedlá ◽  
Jiří Smejkal ◽  
Petr Aubrecht ◽  
Michaela Liegertová ◽  
...  

A novel design of 3D printed zebrafish millifluidic system for embryonic long-term cultivation and toxicity screening has been developed. The chip unit provides 24 cultivation chambers and a selective individual embryo removal functionality.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3543
Author(s):  
Wei Zhou ◽  
Jiawei Fang ◽  
Shuwei Tang ◽  
Zhengguo Wu ◽  
Xiaoying Wang

Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.


Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


2021 ◽  
pp. 50-54
Author(s):  
Nor Aiman Sukindar ◽  
Noorazizi Mohd Samsuddin ◽  
Sharifah Imihezri Bt. Syed Shaharuddin ◽  
Shafie Kamaruddin ◽  
Ahmad Zahirani Ahmad Azhar ◽  
...  

This project involves the implementation of 3D printing technology on designing and fabricating food holders in the food industry. Food holders are designed to hold the food packages in the filling line for food manufacturing industries that apply retort technology. Therefore, this study aims to implement the 3D printing technology in particular FDM to fabricate food holders for the food processing industry. The approach of using this technology is focused on giving more view on the capability of 3D printing technology, aiming at reducing the overall process fabrication cost and fabrication time. Hence, the fabrication cost and time between FDM and conventional machining methods were compared. This study revealed that Organic Gain food industry was able to reduce the cost and fabrication time for the food holder up to approximately 96.3% and 72% respectively. This project gives an insight into the ability of 3D printing technology in delivering the demands of the industry in producing parts as well as the adaptability of the technology to the industry in new product development. The project was carried out successfully and the 3D printed food holder has been tested and functions smoothly.


Author(s):  
Sílvia Castro ◽  
Raquel Rocha ◽  
Afonso João ◽  
Eduardo Richter ◽  
Rodrigo Munoz

Additive-manufacturing is one of the major pillars of the new industrial revolution and the three-dimensional (3D) printing technology has been highlighted in this scenario. Among the many areas benefited by 3D-printing, the development of electrochemical sensors has appeared in evidence in the last years. One potential application of 3D-printed electrochemical sensors is devoted to forensic chemistry, which demands for portable analytical methods that can provide on-site measurements and thus bring a relevant information in loco. In this context, this review highlights the recent contribution of 3D-printing technology on the development of electrochemical sensors with great promises for on-site analysis in “real-world” forensic scenarios. From the detection of trace explosives, gunshot residues, illicit drugs and chemical threats, to the measurement of adulterants in food and fuels, we show the wide range of applications that 3D-printed electrochemical sensors have been proposed and future demands that can be addressed by such a powerful, affordable, and accessible tool.


Author(s):  
Norman Gwangwava ◽  
Catherine Hlahla

Using 3D printing technology in learning institutions brings an industrial experience to learners as well as an exposure to the same cutting-edge technologies encountered in real life careers. The chapter explores 3D printing technology at kindergarten (preschool), in the lecture room (BEng programme), and ready-to-use 3D printed products. In educational toy applications, the effect of poor product designs that do not meet the children's dimensional and safety requirements can lead to injuries, development of musculoskeletal disorders and health problems, some of which may be experienced by the children when they grow up. In order to address the problem of poor design, measurements of anthropometric dimensions from male and female children, aging from 6 to 7 years old were taken and concepts for educational toys were then generated. Other practical applications of the 3D printing technology explored in the chapter are lecture room demonstrations, prototyping of design projects and a web-based mass-customization of office mini-storage products.


2019 ◽  
Vol 24 (42) ◽  
pp. 5039-5048 ◽  
Author(s):  
Sabna Kotta ◽  
Anroop Nair ◽  
Nimer Alsabeelah

Background: 3D printing technology is a new chapter in pharmaceutical manufacturing and has gained vast interest in the recent past as it offers significant advantages over traditional pharmaceutical processes. Advances in technologies can lead to the design of suitable 3D printing device capable of producing formulations with intended drug release. Methods: This review summarizes the applications of 3D printing technology in various drug delivery systems. The applications are well arranged in different sections like uses in personalized drug dosing, complex drugrelease profiles, personalized topical treatment devices, novel dosage forms and drug delivery devices and 3D printed polypills. Results: This niche technology seems to be a transformative tool with more flexibility in pharmaceutical manufacturing. Typically, 3D printing is a layer-by-layer process having the ability to fabricate 3D formulations by depositing the product components by digital control. This additive manufacturing process can provide tailored and individualized dosing for treatment of patients different backgrounds with varied customs and metabolism pattern. In addition, this printing technology has the capacity for dispensing low volumes with accuracy along with accurate spatial control for customized drug delivery. After the FDA approval of first 3D printed tablet Spritam, the 3D printing technology is extensively explored in the arena of drug delivery. Conclusion: There is enormous scope for this promising technology in designing various delivery systems and provides customized patient-compatible formulations with polypills. The future of this technology will rely on its prospective to provide 3D printing systems capable of manufacturing personalized doses. In nutshell, the 3D approach is likely to revolutionize drug delivery systems to a new level, though need time to evolve.


Sign in / Sign up

Export Citation Format

Share Document