scholarly journals Fabrication of 2-D Capacitive Micromachined Ultrasonic Transducer (CMUT) Array through Silicon Wafer Bonding

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Ziyuan Wang ◽  
Changde He ◽  
Wendong Zhang ◽  
Yifan Li ◽  
Pengfei Gao ◽  
...  

Capacitive micromachined ultrasound transducers (CMUTs) have broad application prospects in medical imaging, flow monitoring, and nondestructive testing. CMUT arrays are limited by their fabrication process, which seriously restricts their further development and application. In this paper, a vacuum-sealed device for medical applications is introduced, which has the advantages of simple manufacturing process, no static friction, repeatability, and high reliability. The CMUT array suitable for medical imaging frequency band was fabricated by a silicon wafer bonding technology, and the adjacent array devices were isolated by an isolation slot, which was cut through the silicon film. The CMUT device fabricated following this process is a 4 × 16 array with a single element size of 1 mm × 1 mm. Device performance tests were conducted, where the center frequency of the transducer was 3.8 MHz, and the 6 dB fractional bandwidth was 110%. The static capacitance (29.4 pF) and center frequency (3.78 MHz) of each element of the array were tested, and the results revealed that the array has good consistency. Moreover, the transmitting and receiving performance of the transducer was evaluated by acoustic tests, and the receiving sensitivity was −211 dB @ 3 MHz, −213 dB @ 4 MHz. Finally, reflection imaging was performed using the array, which provides certain technical support for the research of two-dimensional CMUT arrays in the field of 3D ultrasound imaging.

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 319 ◽  
Author(s):  
Mansoor Ahmad ◽  
Ayhan Bozkurt ◽  
Omid Farhanieh

This article presents a new wafer-bonding fabrication technique for Capacitive Micromachined Ultrasonic Transducers (CMUTs) using polymethyl methacrylate (PMMA). The PMMA-based single-mask and single-dry-etch step-bonding device is much simpler, and reduces process steps and cost as compared to other wafer-bonding methods and sacrificial-layer processes. A low-temperature (< 180 ∘ C ) bonding process was carried out in a purpose-built bonding tool to minimize the involvement of expensive laboratory equipment. A single-element CMUT comprising 16 cells of 2.5 mm radius and 800 nm cavity was fabricated. The center frequency of the device was set to 200 kHz for underwater communication purposes. Characterization of the device was carried out in immersion, and results were subsequently validated with data from Finite Element Analysis (FEA). Results show the feasibility of the fabricated CMUTs as receivers for underwater applications.


2021 ◽  
Vol 11 (22) ◽  
pp. 10617
Author(s):  
Hyun-Tae Park ◽  
Ji-Yong Um

This work proposes a proof-of-concept ultrasound blood-flow-monitoring circuit system using a single-element transducer. The circuit system consists of a single-element ultrasonic transducer, an analog interface circuit, and a field-programmable gate array (FPGA). Since the system uses a single-element transducer, an ultrasound image cannot be reconstructed unless scanning with mechanical movement is used. An ultrasound blood-flow monitor basically needs to acquire a Doppler sample volume by positioning a range gate at a vessel region on a scanline. Most recent single-transducer-based ultrasound pulsed-wave Doppler devices rely on a manual adjustment of the range gate to acquire Doppler sample volumes. However, the manual adjustment of the range gate depends on the user’s experience, and it can be time consuming if a transducer is not properly positioned. Thus, automatic range-gate-positioning is more desirable for image-free pulsed-wave Doppler devices. This work proposes a circuit system which includes a new automatic range-gate-positioning scheme. It blindly tracks the position of a blood vessel on a scanline by using the accumulation of Doppler amplitude deviations and a hysteresis slicing function. The proposed range-gate-positioning scheme has been implemented in an FPGA for real-time operation and is based on addition-only computations, except for filter parts to reduce the complexity of computation in the hardware. The proposed blood-flow-monitoring circuit system has been implemented with discrete commercial chips for proof-of-concept purposes. It uses a center frequency of 2 MHz and a system-clock frequency of 20 MHz. The FPGA only utilizes 5.6% of slice look-up-tables (LUTs) for implementation of the range-gate-positioning scheme. For measurements, the circuit system was utilized to interrogate a customized flow phantom model, which included two vessel-mimicking channels. The circuit system successfully acquired Doppler sample volumes by positioning a range gate on a fluid channel. In addition, the estimated Doppler shift frequency shows a good agreement with the theoretical value.


Author(s):  
Yuanyu Yu ◽  
Jiujiang Wang ◽  
Xin Liu ◽  
Sio Hang Pun ◽  
Weibao Qiu ◽  
...  

Background:: Ultrasound is widely used in the applications of underwater imaging. Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate to the traditional piezoelectric ultrasonic transducer. In underwater ultrasound imaging, better resolutions can be achieved with a higher frequency ultrasound. Therefore, a CMUT array for high-frequency ultrasound imaging is proposed in this work. Methods:: Analytical methods are used to calculate the center frequency in water and the pull-in voltage for determining the operating point of CMUT. Finite element method model was developed to finalize the design parameters. The CMUT array was fabricated with a five-mask sacrificial release process. Results:: The CMUT array owned an immersed center frequency of 2.6 MHz with a 6 dB fractional bandwidth of 123 %. The pull-in voltage of the CMUT array was 85 V. An underwater imaging experiment was carried out with the target of three steel wires. Conclusion:: In this study, we have developed CMUT for high-frequency underwater imaging. The experiment showed that the CMUT can detect the steel wires with the diameter of 100 μm and the axial resolution was 0.582 mm, which is close to one wavelength of ultrasound in 2.6 MHz.


2017 ◽  
Vol 17 (6) ◽  
pp. 881-885 ◽  
Author(s):  
Luigi Guerriero ◽  
Giovanni Guerriero ◽  
Gerardo Grelle ◽  
Francesco M. Guadagno ◽  
Paola Revellino

Abstract. Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.


1998 ◽  
Vol 70 (1-2) ◽  
pp. 179-184 ◽  
Author(s):  
Steen Weichel ◽  
Roger de Reus ◽  
Michael Lindahl
Keyword(s):  

2007 ◽  
Vol 46 (1) ◽  
pp. 21-23 ◽  
Author(s):  
Norihito Kawaguchi ◽  
Ryusuke Kawakami ◽  
Ken-ichiro Nishida ◽  
Naoya Yamamoto ◽  
Miyuki Masaki ◽  
...  

1997 ◽  
Vol 36 (Part 2, No. 5A) ◽  
pp. L527-L528 ◽  
Author(s):  
Robert W. Bower ◽  
Frank Y.-J. Chin

2009 ◽  
Vol 628-629 ◽  
pp. 405-410 ◽  
Author(s):  
Da Zhi Wang ◽  
R.A. Dorey

In this paper, electrohydrodynamic atomization combined with a polymeric micromoulding technique was used to form PZT single element devices using a PZT sol-gel slurry without an etching process. The PZT single element device was initially designed to work as a piezoelectric ultrasonic transducer consisting of a circular or a square of various sizes, which was produced and used to evaluate the process. The resulting PZT device had a homogenous microstructure. It was observed that the relative permittivity of the circular and square single element devices was especially high at small size due to the fringe effect. The results show that the radius and width of the PZT single circular and square element devices with a thickness of 15µm should be bigger than 400µm in order to reduce the fringe effect.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii286-iii286
Author(s):  
Zachary Englander ◽  
Hong-Jian Wei ◽  
Antonios Pouliopoulos ◽  
Pavan Upadhyayula ◽  
Chia-Ing Jan ◽  
...  

Abstract BACKGROUND Drug delivery remains a major obstacle in DIPG, as the blood brain barrier (BBB) limits the penetration of systemic therapies to the brainstem. Focused ultrasound (FUS) is an exciting new technology that, when combined with microbubbles, can open the BBB permitting the entry of drugs across the cerebrovasculature. Given that the utility of FUS in brainstem tumors remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. METHODS A syngeneic orthotopic model was established by stereotactic injection of PDGF-B+PTEN-/-p53-/- murine glioma cells (10,000/1ul) into the pons of B6 albino mice. A single-element, spherical-segment FUS transducer (center frequency=1.5MHz) driven by a function generator through a power amplifier (acoustic pressure=0.7MPa) was used with concurrent intravenous microbubble injection (FUS+MB) to sonicate the tumor on post-injection day 14. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen (KIS) testing was completed to measure motor function. Mice were either immediately sacrificed for histopathological assessment or serially monitored for survival. RESULTS In mice treated with FUS (n=11), there was no measured deficit in KIS testing. Additionally, the degree of intra-tumoral hemorrhage and inflammation on H&E in control (n=5) and treated mice (n=5) was similar. Lastly, there was no difference in survival between the groups (control, n=6, median=26 days; FUS, n=6, median=25 days, p&gt;0.05). CONCLUSION FUS+MB is a safe and feasible technique to open the BBB in a preclinical pontine glioma model.


Sign in / Sign up

Export Citation Format

Share Document