scholarly journals Precise Layer Separation of Two-Dimensional Nanomaterials for Scalable Optoelectronics

2021 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Joohoon Kang

The biggest challenge in the field of low-dimensional nanomaterials, in terms of practical application, is scalable production with structural uniformity. As the size of materials is becoming smaller, the tendency of their structure-dependent properties, which directly affects the device reliability of largescale applications, is to become stronger due to quantum confinement effects. For example, one-dimensional (1D) carbon nanotubes have various electrical/optical properties based on their structures (e.g., diameter, chirality, etc.). Likewise, two-dimensional (2D) layered materials also exhibit different properties based on their thickness. To overcome such structural heterogeneity, isopycnic density gradient ultracentrifugation (i-DGU) will be introduced to achieve monodispersity of nanomaterials in structure based on their buoyant density differentiations. The i-DGU approach makes it possible to sort 1D carbon nanotubes and 2D layered materials such as graphene, transition metal dichalcogenides and hexagonal boron nitride with high structural purity, based on their structure. Various largescale optoelectronic applications, electrically driven light emitters and photodetectors demonstrated based on the monodisperse nanomaterials will be discussed.

Author(s):  
Manoj K. Jana ◽  
C. N. R. Rao

The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS 2 . In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


2019 ◽  
Vol 5 (6) ◽  
pp. eaax0390 ◽  
Author(s):  
Junseong Song ◽  
Hyun Yong Song ◽  
Zhen Wang ◽  
Seokhee Lee ◽  
Jae-Yeol Hwang ◽  
...  

The discovery of new families, beyond graphene, of two-dimensional (2D) layered materials has always attracted great attention. However, it has been challenging to artificially develop layered materials with honeycomb atomic lattice structure composed of multicomponents such as hexagonal boron nitride. Here, through the dimensional manipulation of a crystal structure from sp3-hybridized 3D-ZnSb, we create an unprecedented layered structure of Zintl phase, which is constructed by the staking of sp2-hybridized honeycomb ZnSb layers. Using structural analysis combined with theoretical calculation, it is found that the 2D-ZnSb has a stable and robust layered structure. The bidimensional polymorphism is a previously unobserved phenomenon at ambient pressure in Zintl families and can be a common feature of transition metal pnictides. This dimensional manipulation of a crystal structure thus provides a rational design strategy to search for new 2D layered materials in various compounds, enabling unlimited expansion of 2D libraries and corresponding physical properties.


SPIN ◽  
2015 ◽  
Vol 05 (04) ◽  
pp. 1540011 ◽  
Author(s):  
Guohui Su ◽  
Xing Wu ◽  
Wenqi Tong ◽  
Chungang Duan

The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 520 ◽  
Author(s):  
Minas M. Stylianakis

Over the last decade, novel materials such as graphene derivatives, transition metal dichalcogenides (TMDs), other two-dimensional (2D) layered materials, perovskites, as well as metal oxides and other metal nanostructures have centralized the interest of the scientific community [...]


2020 ◽  
Vol 7 ◽  
Author(s):  
Xue-Kun Chen ◽  
Yu-Jia Zeng ◽  
Ke-Qiu Chen

Heterostructures based on two-dimensional (2D) materials have attracted intense attention in recent decades due to their unusual and tunable physics/chemical properties, which can be converted into promising engineering applications ranging from electronics, photonics, and phononics to energy recovery. A fundamental understanding of thermal transport in 2D heterostructures is crucial importance for developing micro-nano devices based on them. In this review, we summarized the recent advances of thermal transport in 2D heterostructures. Firstly, we introduced diverse theoretical approaches and experimental techniques for thermal transport in low-dimensional materials. Then we briefly reviewed the thermal properties of various 2D single-phase materials beyond graphene such as hexagonal boron nitride (h-BN), phosphorene, transition metal dichalcogenides (TMDs) and borophene, and emphatically discussed various influencing factors including structural defects, mechanical strain, and substrate interactions. Moreover, we highlighted thermal conduction control in tailored nanosystems—2D heterostructures and presented the associated underlying physical mechanisms, especially interface-modulated phonon dynamics. Finally, we outline their significant applications in advanced thermal management and thermoelectrics conversion, and discuss a number of open problems on thermal transport in 2D heterostructures.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Leilei Xu ◽  
Jiafeng Feng ◽  
Kangkang Zhao ◽  
Weiming Lv ◽  
Xiufeng Han ◽  
...  

Two-dimensional (2D) layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR) properties of a black phosphorus (BP) spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM) electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3437-3452
Author(s):  
Rui Chen ◽  
Jinhua Cao ◽  
Stephen Gee ◽  
Yin Liu ◽  
Jie Yao

AbstractTwo-dimensional (2D) layered materials hosting dislocations have attracted considerable research attention in recent years. In particular, screw dislocations can result in a spiral topology and an interlayer twist in the layered materials, significantly impacting the stacking order and symmetry of the layers. Moreover, the dislocations with large strain and heavily distorted atomic registry can result in a local modification of the structures around the dislocation. The dislocations thus provide a useful route to engineering optical, electrical, thermal, mechanical and catalytic properties of the 2D layered materials, which show great potential to bring new functionalities. This article presents a comprehensive review of the experimental and theoretical progress on the growth and properties of the dislocated 2D layered materials. It also offers an outlook on the future works in this promising research field.


2020 ◽  
Vol 5 (2) ◽  
pp. 331-335 ◽  
Author(s):  
Viviana Jehová González ◽  
Antonio M. Rodríguez ◽  
Ismael Payo ◽  
Ester Vázquez

Different 2D-layered materials of transition metal dichalcogenides (TMDCs) such as boron nitride (BN) or molybdenum disulphide (MoS2) have been theorised to have piezoelectric behaviour.


NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850138
Author(s):  
Seungwook Son ◽  
Dongwook Kim ◽  
Sutassana Na-Phattalung ◽  
Jisoon Ihm

Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.


Sign in / Sign up

Export Citation Format

Share Document