scholarly journals An Association of Pathogens and Biofilms with Alzheimer’s Disease

2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Sandhya T. Chakravarthi ◽  
Suresh G. Joshi

As one of the leading causes of dementia, Alzheimer’s disease (AD) is a condition in which individuals experience progressive cognitive decline. Although it is known that beta-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) of tau fibrils are hallmark characteristics of AD, the exact causes of these pathologies are still mostly unknown. Evidence that infectious diseases may cause AD pathology has been accumulating for decades. The association between microbial pathogens and AD is widely studied, and there are noticeable correlations between some bacterial species and AD pathologies, especially spirochetes and some of the oral microbes. Borrelia burgdorferi has been seen to correlate with Aβ plaques and NFTs in infected cells. Because of the evidence of spirochetes in AD patients, Treponema pallidum and other oral treponemes are speculated to be a potential cause of AD. T. pallidum has been seen to form aggregates in the brain when the disease disseminates to the brain that closely resemble the Aβ plaques of AD patients. This review examines the evidence as to whether pathogens could be the cause of AD and its pathology. It offers novel speculations that treponemes may be able to induce or correlate with Alzheimer’s disease.

2021 ◽  
Vol 15 ◽  
Author(s):  
Narengaowa ◽  
Wei Kong ◽  
Fei Lan ◽  
Umer Farooq Awan ◽  
Hong Qing ◽  
...  

Alzheimer’s disease (AD) is one of the most frequently diagnosed neurodegenerative disorders worldwide and poses a major challenge for both affected individuals and their caregivers. AD is a progressive neurological disorder associated with high rates of brain atrophy. Despite its durable influence on human health, understanding AD has been complicated by its enigmatic and multifactorial nature. Neurofibrillary tangles and the deposition of amyloid-beta (Aβ) protein are typical pathological features and fundamental causes of cognitive impairment in AD patients. Dysbiosis of oral and gut microbiota has been reported to induce and accelerate the formation of Aβ plaques and neurofibrillary tangles. For instance, some oral microbes can spread to the brain through cranial nerves or cellular infections, which has been suggested to increase the risk of developing AD. Importantly, the interaction between intestinal microbiota and brain cells has been recognized as influencing the development of AD as well as other neurodegenerative diseases. In particular, the metabolites produced by certain intestinal microorganisms can affect the activity of microglia and further mediate neuroinflammation, which is a leading cause of neuronal necrosis and AD pathogenesis. Which pathogens and associated pathways are involved in the development and progression of AD remains to be elucidated; however, it is well-known that gut microbiota and their metabolites can affect the brain by both direct and indirect means. Understanding the specific mechanisms involved in the interaction between these pathogens and the nervous system is vital for the early intervention in AD. In this review, we aim to comprehensively discuss the possible mechanistic pathways underlying the oral-brain, the gut-brain and the oral-gut-brain associations.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 5-5
Author(s):  
Hind Bouzid ◽  
Julia Belk ◽  
Max Jan ◽  
Yanyan Qi ◽  
Chloé Sarnowski ◽  
...  

Abstract Clonal hematopoiesis of indeterminate potential (CHIP) occurs when hematopoietic stem cells (HSCs) acquire a mutation, most commonly a null variant in TET2 or DNMT3A, that confers a selective advantage. Blood cancers may result if additional cooperating mutations are acquired. However, CHIP may also cause atherosclerosis and other inflammatory diseases because these mutations alter the function or development of effector immune cells derived from the HSCs. Genome-wide association studies have implicated microglia, the resident myeloid cells in the brain, as key players in the biology of Alzheimer's disease (AD). Here, we asked whether CHIP associated with AD dementia or neuropathologic change, and whether mutant marrow-derived cells could be found in the brains of CHIP carriers. To test for an association, we used data from the Trans-omics for Precision Medicine project (TOPMed) and the Alzheimer's Disease Sequencing Project (ADSP), where whole genome or exome sequencing data as well as AD phenotype data was available on 5,730 persons. TOPMed contained population-based cohorts unselected for AD, while ADSP was a case-control study for AD. We surprisingly discovered that the presence of CHIP was associated with a reduced risk of AD dementia in both projects (fixed-effects meta-analysis odds ratio 0.64, p = 3.0 x 10-5, adjusted for age, sex and APOE genotype) (Figure 1). The protective effect of CHIP was strongest in those with APOE e3 or e4 alleles, but not seen in those with APOE e2 allele. No substantial differences in AD risk were seen based on mutated driver gene. In addition, the presence of CHIP was associated with a reduced burden of amyloid plaques and neurofibrillary tangles in the brains of those without dementia. In sum, our human genetic analyses indicated that CHIP was robustly associated with protection from AD dementia and AD-related neuropathologic changes. A causal link between CHIP and AD would be strengthened by finding the mutated cells infiltrating the brain. However, it is presumed that bone marrow progenitors have minimal contribution to the adult microglial pool. To determine if the mutations seen in the blood of CHIP carriers could also be found in the brain, we obtained 8 occipital cortex samples from autopsy of donors with CHIP, 6 of whom were cognitively normal at the time of death. The 8 CHIP carriers had mutations in DNMT3A, TET2, ASXL1, SF3B1, and GNB1 with the highest frequency in DNMT3A and TET2, which is representative of the relative proportion of these mutations in the general population. We detected the CHIP somatic variants in the microglia enriched (NeuN- c-Maf+) fraction of brain in 7 out of 8 CHIP carriers, with a VAF ranging from 0.02 to 0.28 (representing 4% to 56% of nuclei) (Figure 2), but at low levels or absent in the other fractions of brain. We then performed single-cell ATAC-sequencing on brain samples from 2 CHIP carriers and 1 control to specify the cellular population harboring CHIP mutations. This revealed that hematopoietic cells in the 3 samples formed a single myeloid cluster that had accessible chromatin at the microglia marker genes TMEM119, P2RY12, and SALL1, but not in genes specific to monocytes or dendritic cells. We further determined that the proportion of cells in this cluster bearing the CHIP mutations ranged from ~40-80% in these two samples, indicating widespread replacement of the endogenous microglial pool by mutant cells. We show here that, unexpectedly, the presence of CHIP is associated with protection from AD dementia. CHIP is also associated with lower levels of neuritic plaques and neurofibrillary tangles in those without dementia, indicating a possible modulating effect of CHIP on the underlying pathophysiology of AD. Consistent with this hypothesis, we also detect substantial infiltration of brain by marrow-derived mutant cells which adopt a microglial-like phenotype. We speculate that the mutations associated with CHIP confer circulating precursor cells with an enhanced ability to engraft in the brain, to differentiate into microglia once engrafted, and/or to clonally expand relative to unmutated cells in the brain microenvironment. These non-mutually exclusive possibilities could provide protection from AD by supplementing the phagocytic capacity of the endogenous microglial system during aging. Figure 1 Figure 1. Disclosures Jaiswal: Novartis: Consultancy, Honoraria; Foresite Labs: Consultancy; Genentech: Consultancy, Honoraria; AVRO Bio: Consultancy, Honoraria; Caylo: Current holder of stock options in a privately-held company.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1794
Author(s):  
Laura Ibanez ◽  
Justin B. Miller

Alzheimer’s disease is a complex and multifactorial condition regulated by both genetics and lifestyle, which ultimately results in the accumulation of β-amyloid (Aβ) and tau proteins in the brain, loss of gray matter, and neuronal death [...]


2012 ◽  
Vol 3 (3) ◽  
Author(s):  
Katherine Kopeikina ◽  
Bradley Hyman ◽  
Tara Spires-Jones

AbstractAccumulation of neurofibrillary tangles (NFT), intracellular inclusions of fibrillar forms of tau, is a hallmark of Alzheimer’s disease. NFT have been considered causative of neuronal death, however, recent evidence challenges this idea. Other species of tau, such as soluble misfolded, hyperphosphorylated, and mislocalized forms, are now being implicated as toxic. Here we review the data supporting soluble tau as toxic to neurons and synapses in the brain and the implications of these data for development of therapeutic strategies for Alzheimer’s disease and other tauopathies.


2010 ◽  
Vol 391 (8) ◽  
Author(s):  
Vivian Hook ◽  
Gregory Hook ◽  
Mark Kindy

Abstract Beta-amyloid (Aβ) in the brain is a major factor involved in Alzheimer's disease (AD) that results in severe memory deficit. Our recent studies demonstrate pharmacogenetic differences in the effects of inhibitors of cathepsin B to improve memory and reduce Aβ in different mouse models of AD. The inhibitors improve memory and reduce brain Aβ in mice expressing the wild-type (WT) β-secretase site of human APP, expressed in most AD patients. However, these inhibitors have no effect in mice expressing the rare Swedish (Swe) mutant amyloid precursor protein (APP). Knockout of the cathepsin B decreased brain Aβ in mice expressing WT APP, validating cathepsin B as the target. The specificity of cathepsin B to cleave the WT β-secretase site, but not the Swe mutant site, of APP for Aβ production explains the distinct inhibitor responses in the different AD mouse models. In contrast to cathepsin B, the BACE1 β-secretase prefers to cleave the Swe mutant site. Discussion of BACE1 data in the field indicate that they do not preclude cathepsin B as also being a β-secretase. Cathepsin B and BACE1 could participate jointly as β-secretases. Significantly, the majority of AD patients express WT APP and, therefore, inhibitors of cathepsin B represent candidate drugs for AD.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Donna M. Wilcock

Alzheimer's disease (AD) is a complex, neurodegenerative disorder characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain. Glial cells, particularly microglial cells, react to the presence of the amyloid plaques and neurofibrillary tangles producing an inflammatory response. While once considered immunologically privileged due to the blood-brain barrier, it is now understood that the glial cells of the brain are capable of complex inflammatory responses. This paper will discuss the published literature regarding the diverse roles of neuroinflammation in the modulation of AD pathologies. These data will then be related to the well-characterized macrophage phenotypes. The conclusion is that the glial cells of the brain are capable of a host of macrophage responses, termed M1, M2a, M2b, and M2c. The relationship between these states and AD pathologies remains relatively understudied, yet published data using various inflammatory stimuli provides some insight. It appears that an M1-type response lowers amyloid load but exacerbates neurofibrillary tangle pathology. In contrast, M2a is accompanied by elevated amyloid load and appears to ameliorate, somewhat, neurofibrillary pathology. Overall, it is clear that more focused, cause-effect studies need to be performed to better establish how each inflammatory state can modulate the pathologies of AD.


2020 ◽  
Author(s):  
Weixi Feng ◽  
Yanli Zhang ◽  
Tianqi Wang ◽  
Ze Wang ◽  
Yan Chen ◽  
...  

Increasing evidence shows that the peripheral immune system is involved in the pathogenesis of Alzheimer’s disease (AD). Here, we report that pulmonary B cells mitigate beta-Amyloid (Aβ) pathology in 5xFAD mice. The proportion of B cells rather than T cells increases in brain, meningeal and lung tissues in 3-month-old 5xFAD mice. Deletion of B cells aggravates Aβ load and memory deficits of 5xFAD mice. Mechanimsly, pulmonary B cells can migrate to the brain parenchyma and produce interleukin-35 that inhibits neuronal β-site APP-cleaving enzyme 1 expression, subsequently reducing the production of Aβ. In turn, proliferation of pulmonary B cells is associated with activation of toll-like receptor/nuclear factor kappa-B pathway by elevated Aβ that is drained from the brain parenchyma to the lungs via meningeal lymphatics. Furthermore, promoting pulmonary B cell proliferation via overexpression of B-cell-activating factor ameliorates brain Aβ load and improves cognitive functions of 10-month-old 5xFAD mice. Together, these results highlight the lungs as both immune targets and effector organs in Aβ pathogenesis. Pulmonary B cells might be a potential target against AD.


Author(s):  
Benjamin Bowman

Abstract: The oral microbiome is the site of the second most abundant microbiota after the gastrointestinal tract. The expanded Human Oral Microbiome Database (eHOMD) that was last updated on November 22, 2017, contains the information of a number of bacterial species, scientists have struggled to categorize and understand every species due to their difficulty of laboratory study. While this much is known, the scientific community still has minimal knowledge of the entire oral microbiome and how it may relate to potential manifestations of various diseases. Periodontitis is one disease that is directly related to the oral microbiome. Periodontitis is the infection of the gums that is associated with poor dental hygiene. This oral malady has been hypothesized to be a potential precursor to neurological Alzheimer’s disease (AD.) Since AD is difficult to study until postmortem, there has been limited availability to study pathways where this may occur. The proposed method by which periodontitis, while primarily hypothesized, includes a shift in the microbiota of the oral cavity to a more pathogenic state. The shift to pathogenicity is mainly believed to be due to an increase in the bacterium Porphyromonas gingivalis. P. gingivalis produces protein plaques on the teeth that can travel through the bloodstream to the brain. The proposed mechanism is hypothesized to weaken the blood-brain barrier and allow for plaque aggregation on the brain seen in AD-infected brains. While more research is necessary to conclude the pathogenesis from periodontitis to Alzheimer’s disease definitively, strides are being made that may help give scientists, and healthcare workers begin preventative measures.


2021 ◽  
Author(s):  
Weixi Feng ◽  
Yanli Zhang ◽  
Tianqi Wang ◽  
Qian Li ◽  
Ze Wang ◽  
...  

Abstract Increasing evidences reveal that the peripheral immune system is involved in the pathogenesis of Alzheimer's disease (AD). Here, we report that pulmonary B lymphocytes mitigate beta-Amyloid (Aβ) pathology in 5xFAD mice. The proportion of B cells, rather than T cells, increases within the brain, meningeal and lung tissues in 3-month-old 5xFAD mice. Deletion of mature B cells aggravates Aβ load and memory deficits of 5xFAD mice. Mechanistically, pulmonary B cells can migrate to the brain parenchyma and produce interleukin-35, which inhibits neuronal β-site APP-cleaving enzyme 1 expression, and subsequently reduces the production of Aβ. In turn, pulmonary B cell proliferation is associated with activation of the toll-like receptor/nuclear factor kappa-B pathway through elevated Aβ that is drained from the brain parenchyma to the lungs via meningeal lymphatics. Furthermore, promoting pulmonary B cell proliferation via overexpression of B-cell-activating factor ameliorates brain Aβ load and improves cognitive functions of 10-month-old 5xFAD mice. Together, these results highlight the lungs as both immune targets and effector organs in Aβ pathogenesis. Pulmonary B cells could serve as a potential target against AD.


Sign in / Sign up

Export Citation Format

Share Document