scholarly journals The Oral-Gut-Brain AXIS: The Influence of Microbes in Alzheimer’s Disease

2021 ◽  
Vol 15 ◽  
Author(s):  
Narengaowa ◽  
Wei Kong ◽  
Fei Lan ◽  
Umer Farooq Awan ◽  
Hong Qing ◽  
...  

Alzheimer’s disease (AD) is one of the most frequently diagnosed neurodegenerative disorders worldwide and poses a major challenge for both affected individuals and their caregivers. AD is a progressive neurological disorder associated with high rates of brain atrophy. Despite its durable influence on human health, understanding AD has been complicated by its enigmatic and multifactorial nature. Neurofibrillary tangles and the deposition of amyloid-beta (Aβ) protein are typical pathological features and fundamental causes of cognitive impairment in AD patients. Dysbiosis of oral and gut microbiota has been reported to induce and accelerate the formation of Aβ plaques and neurofibrillary tangles. For instance, some oral microbes can spread to the brain through cranial nerves or cellular infections, which has been suggested to increase the risk of developing AD. Importantly, the interaction between intestinal microbiota and brain cells has been recognized as influencing the development of AD as well as other neurodegenerative diseases. In particular, the metabolites produced by certain intestinal microorganisms can affect the activity of microglia and further mediate neuroinflammation, which is a leading cause of neuronal necrosis and AD pathogenesis. Which pathogens and associated pathways are involved in the development and progression of AD remains to be elucidated; however, it is well-known that gut microbiota and their metabolites can affect the brain by both direct and indirect means. Understanding the specific mechanisms involved in the interaction between these pathogens and the nervous system is vital for the early intervention in AD. In this review, we aim to comprehensively discuss the possible mechanistic pathways underlying the oral-brain, the gut-brain and the oral-gut-brain associations.

2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Sandhya T. Chakravarthi ◽  
Suresh G. Joshi

As one of the leading causes of dementia, Alzheimer’s disease (AD) is a condition in which individuals experience progressive cognitive decline. Although it is known that beta-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) of tau fibrils are hallmark characteristics of AD, the exact causes of these pathologies are still mostly unknown. Evidence that infectious diseases may cause AD pathology has been accumulating for decades. The association between microbial pathogens and AD is widely studied, and there are noticeable correlations between some bacterial species and AD pathologies, especially spirochetes and some of the oral microbes. Borrelia burgdorferi has been seen to correlate with Aβ plaques and NFTs in infected cells. Because of the evidence of spirochetes in AD patients, Treponema pallidum and other oral treponemes are speculated to be a potential cause of AD. T. pallidum has been seen to form aggregates in the brain when the disease disseminates to the brain that closely resemble the Aβ plaques of AD patients. This review examines the evidence as to whether pathogens could be the cause of AD and its pathology. It offers novel speculations that treponemes may be able to induce or correlate with Alzheimer’s disease.


2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


2020 ◽  
Vol 11 (1) ◽  
pp. 79-89 ◽  
Author(s):  
F.H.P. Tan ◽  
G. Liu ◽  
S.-Y.A. Lau ◽  
M.H. Jaafar ◽  
Y.-H. Park ◽  
...  

Alzheimer’s disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia’s relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson’s, Huntington’s and Alzheimer’s diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7’s ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.


Gut ◽  
2019 ◽  
Vol 69 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Min-Soo Kim ◽  
Yoonhee Kim ◽  
Hyunjung Choi ◽  
Woojin Kim ◽  
Sumyung Park ◽  
...  

ObjectiveCerebral amyloidosis and severe tauopathy in the brain are key pathological features of Alzheimer’s disease (AD). Despite a strong influence of the intestinal microbiota on AD, the causal relationship between the gut microbiota and AD pathophysiology is still elusive.DesignUsing a recently developed AD-like pathology with amyloid and neurofibrillary tangles (ADLPAPT) transgenic mouse model of AD, which shows amyloid plaques, neurofibrillary tangles and reactive gliosis in their brains along with memory deficits, we examined the impact of the gut microbiota on AD pathogenesis.ResultsComposition of the gut microbiota in ADLPAPT mice differed from that of healthy wild-type (WT) mice. Besides, ADLPAPT mice showed a loss of epithelial barrier integrity and chronic intestinal and systemic inflammation. Both frequent transfer and transplantation of the faecal microbiota from WT mice into ADLPAPT mice ameliorated the formation of amyloid β plaques and neurofibrillary tangles, glial reactivity and cognitive impairment. Additionally, the faecal microbiota transfer reversed abnormalities in the colonic expression of genes related to intestinal macrophage activity and the circulating blood inflammatory monocytes in the ADLPAPT recipient mice.ConclusionThese results indicate that microbiota-mediated intestinal and systemic immune aberrations contribute to the pathogenesis of AD in ADLPAPT mice, providing new insights into the relationship between the gut (colonic gene expression, gut permeability), blood (blood immune cell population) and brain (pathology) axis and AD (memory deficits). Thus, restoring gut microbial homeostasis may have beneficial effects on AD treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xueyun Chen ◽  
Shu Chen ◽  
Weidi Liang ◽  
Fang Ba

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive and painless technique that has been applied for the treatments of diverse neurodegenerative disorders. In the current study, its anti-Alzheimer’s disease (AD) effect was assessed and the mechanism driving the effect was explored. The AD symptoms were induced via the intracranial injection of Aβ1-42 in mice and then treated with rTMS of 1 Hz or 10 Hz. The anti-AD effect of rTMS was assessed by Morris water maze (MWM), histological staining and western blotting. The results showed that rTMS administrations of both frequencies improved the cognitive function and suppressed neuron apoptosis in AD mice. Moreover, the treatment also increased the brain BDNF, NGF, and doublecortin levels, which represented the increased viability of neurons by rTMS. The injection of Aβ1-42 also increased the expressions of p-GSK-3β, p-Tau, and p-β-catenin and suppressed the level of total β-catenin. After the treatments of rTMS, the level of β-catenin was restored, indicating the activation of β-catenin signaling. In conclusion, the findings outlined in the current study demonstrated that the anti-AD effect of rTMS was associated with the activation of β-catenin, which would promote the survival of neurons.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 5-5
Author(s):  
Hind Bouzid ◽  
Julia Belk ◽  
Max Jan ◽  
Yanyan Qi ◽  
Chloé Sarnowski ◽  
...  

Abstract Clonal hematopoiesis of indeterminate potential (CHIP) occurs when hematopoietic stem cells (HSCs) acquire a mutation, most commonly a null variant in TET2 or DNMT3A, that confers a selective advantage. Blood cancers may result if additional cooperating mutations are acquired. However, CHIP may also cause atherosclerosis and other inflammatory diseases because these mutations alter the function or development of effector immune cells derived from the HSCs. Genome-wide association studies have implicated microglia, the resident myeloid cells in the brain, as key players in the biology of Alzheimer's disease (AD). Here, we asked whether CHIP associated with AD dementia or neuropathologic change, and whether mutant marrow-derived cells could be found in the brains of CHIP carriers. To test for an association, we used data from the Trans-omics for Precision Medicine project (TOPMed) and the Alzheimer's Disease Sequencing Project (ADSP), where whole genome or exome sequencing data as well as AD phenotype data was available on 5,730 persons. TOPMed contained population-based cohorts unselected for AD, while ADSP was a case-control study for AD. We surprisingly discovered that the presence of CHIP was associated with a reduced risk of AD dementia in both projects (fixed-effects meta-analysis odds ratio 0.64, p = 3.0 x 10-5, adjusted for age, sex and APOE genotype) (Figure 1). The protective effect of CHIP was strongest in those with APOE e3 or e4 alleles, but not seen in those with APOE e2 allele. No substantial differences in AD risk were seen based on mutated driver gene. In addition, the presence of CHIP was associated with a reduced burden of amyloid plaques and neurofibrillary tangles in the brains of those without dementia. In sum, our human genetic analyses indicated that CHIP was robustly associated with protection from AD dementia and AD-related neuropathologic changes. A causal link between CHIP and AD would be strengthened by finding the mutated cells infiltrating the brain. However, it is presumed that bone marrow progenitors have minimal contribution to the adult microglial pool. To determine if the mutations seen in the blood of CHIP carriers could also be found in the brain, we obtained 8 occipital cortex samples from autopsy of donors with CHIP, 6 of whom were cognitively normal at the time of death. The 8 CHIP carriers had mutations in DNMT3A, TET2, ASXL1, SF3B1, and GNB1 with the highest frequency in DNMT3A and TET2, which is representative of the relative proportion of these mutations in the general population. We detected the CHIP somatic variants in the microglia enriched (NeuN- c-Maf+) fraction of brain in 7 out of 8 CHIP carriers, with a VAF ranging from 0.02 to 0.28 (representing 4% to 56% of nuclei) (Figure 2), but at low levels or absent in the other fractions of brain. We then performed single-cell ATAC-sequencing on brain samples from 2 CHIP carriers and 1 control to specify the cellular population harboring CHIP mutations. This revealed that hematopoietic cells in the 3 samples formed a single myeloid cluster that had accessible chromatin at the microglia marker genes TMEM119, P2RY12, and SALL1, but not in genes specific to monocytes or dendritic cells. We further determined that the proportion of cells in this cluster bearing the CHIP mutations ranged from ~40-80% in these two samples, indicating widespread replacement of the endogenous microglial pool by mutant cells. We show here that, unexpectedly, the presence of CHIP is associated with protection from AD dementia. CHIP is also associated with lower levels of neuritic plaques and neurofibrillary tangles in those without dementia, indicating a possible modulating effect of CHIP on the underlying pathophysiology of AD. Consistent with this hypothesis, we also detect substantial infiltration of brain by marrow-derived mutant cells which adopt a microglial-like phenotype. We speculate that the mutations associated with CHIP confer circulating precursor cells with an enhanced ability to engraft in the brain, to differentiate into microglia once engrafted, and/or to clonally expand relative to unmutated cells in the brain microenvironment. These non-mutually exclusive possibilities could provide protection from AD by supplementing the phagocytic capacity of the endogenous microglial system during aging. Figure 1 Figure 1. Disclosures Jaiswal: Novartis: Consultancy, Honoraria; Foresite Labs: Consultancy; Genentech: Consultancy, Honoraria; AVRO Bio: Consultancy, Honoraria; Caylo: Current holder of stock options in a privately-held company.


2012 ◽  
Vol 3 (3) ◽  
Author(s):  
Katherine Kopeikina ◽  
Bradley Hyman ◽  
Tara Spires-Jones

AbstractAccumulation of neurofibrillary tangles (NFT), intracellular inclusions of fibrillar forms of tau, is a hallmark of Alzheimer’s disease. NFT have been considered causative of neuronal death, however, recent evidence challenges this idea. Other species of tau, such as soluble misfolded, hyperphosphorylated, and mislocalized forms, are now being implicated as toxic. Here we review the data supporting soluble tau as toxic to neurons and synapses in the brain and the implications of these data for development of therapeutic strategies for Alzheimer’s disease and other tauopathies.


2019 ◽  
Vol 16 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Kristina Endres

Background: There is growing evidence that the gut microbiota may play an important role in neurodegenerative diseases such as Alzheimer’s disease. However, how these commensals influence disease risk and progression still has to be deciphered. Objective: The objective of this review was to summarize current knowledge on the interplay between gut microbiota and retinoic acid. The latter one represents one of the important micronutrients, which have been correlated to Alzheimer’s disease and are used in initial therapeutic intervention studies. Methods: A selective overview of the literature is given with the focus on the function of retinoic acid in the healthy and diseased brain, its metabolism in the gut, and the potential influence that the bioactive ligand may have on microbiota, gut physiology and, Alzheimer’s disease. Results: Retinoic acid can influence neuronal functionality by means of plasticity but also by neurogenesis and modulating proteostasis. Impaired retinoid-signaling, therefore, might contribute to the development of diseases in the brain. Despite its rather direct impact, retinoic acid also influences other organ systems such as gut by regulating the residing immune cells but also factors such as permeability or commensal microbiota. These in turn can also interfere with retinoid-metabolism and via the gutbrain- axis furthermore with Alzheimer’s disease pathology within the brain. Conclusion: Potentially, it is yet too early to conclude from the few reports on changed microbiota in Alzheimer’s disease to a dysfunctional role in retinoid-signaling. However, there are several routes how microbial commensals might affect and might be affected by vitamin A and its derivatives.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sarama Saha ◽  
Sukhpal Singh ◽  
Suvarna Prasad ◽  
Amit Mittal ◽  
Anil Kumar Sharma ◽  
...  

: Alzheimer’s disease (AD) is characterized by progressive death of neuronal cells in the regions of the brain concerned with memory and cognition, and is the major cause of dementia in the elderly population. Various molecular mechanisms, metabolic risk factors and environmental triggers contributing to the genesis and progression of AD are under intense investigations. The present review has dealt with the impact of a highly discussed topic of gut microbiota affecting the neurodegeneration in the AD brain. A detailed description of the composition of gut bacterial flora and its interaction with the host has been presented, followed by an analysis of key concepts of bi- directional communication between gut microbiota and the brain. The substantial experimental evidence of gut microbiota affecting the neurodegenerative process in experimental AD models has been described next in this review, and finally, the limitations of such experimental studies vis-a- vis the actual disease and the paucity of clinical data on this topic have also been mentioned.


Sign in / Sign up

Export Citation Format

Share Document